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B Lexicauizep RM RN

» Lexicalized Reordering Model
— The most widely used RM

— Given source and target sentence f,e and

phrase alignment a

n
p(ole, f) = l—[ P(o;lei, fa, ai—1, a;)
i=1



B Lexicauizep RM RN

» Lexicalized Reordering Model
— orientation type o: LR, MSD, MSLR

— Take MSD type for e.g., it can be defined as

M,lf A — Aj—1 = 1
0; =14 S,ifa;—a;j_; =-—1
D, lf |ai — ai_ll #* 1



B Lexicauizep RM RN

 Lexicalized Reordering Model

— Some researcher also suggested that by including both current
and previous phrase pairs into condition, can improve accuracy
(Li et al., 2014)

P(0|fa €, a) ~ HP(OiIfaiaéiaai—l’ai)
i=1

)

n
P(Olfa €, a) ~ HP(O'ilfaia éi’ fai_laéi—laai—la ai)
1=1
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BILSTM NeuraL RM SRS

- Why RNN?
— RNNSs are capable to learn sequential problems

— |t is natural to use RNNSs to include much more

history to predict next word’s orientation (reordering)

— Further by utilizing LSTM, RNNs are able to capture
long-time dependency, and solve “Gradient

Vanishing” problem (Bengio, 1997)



BILSTM NeuraL RM SRS

. Training data (1) If current target word is one-to-one align-
ment, then we can directly induce its orien-
proces sin g tations (left or right).

(2) If current source/target word is one-to-

_ many alignment, then we judge its orienta-

— Given source and tion by considering its first aligned tar-
get/source word, and the other aligned tar-
get/source words are annotated as “<fol-
low>" reordering type, which means this
word pair inherent orientation of previous
word pair.

(3) If current source/target word is not aligned
to any target/source words, we introduce a
“<NULL>” token in the opposite side, and
annotate this word pair as “<follow>" reor-
dering type.

target sentence pair

and alignment



BILSTM NeuraL RM SRS

 Training Data Processing: Example

dengdao zhengfu de pizhun

...... F3 | B B #UE| ...

@ R R —__

...... wait for| japproval| of the government ......

dengdao zhengfu de pizhun

...... F3 BUF B9 #bE ...

(b) RM RMF

...... wait for approval of the government ......

Figure 1: Illustration of data processing. (a) Orig-
inal reordering (omit the alignment inside phrase);
(b) processed reordering, “R”-right, “L”-left, “F”-
follow.



BILSTM NeuraL RM SRS

 History Extended Reordering Model

P(o|f,e,a) ~ HP(0i|fa,-,éz',ai—1, a;)
i=1

¥

P(Olf, €, a) ~ HP(O’ilfauéiafai_laéi—laai—laai)
=1

l Proposed model

p(ole, f) = l_IP(ol|el,f1 » Aj— 1,a)
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BILSTM NeuraL RM SRS

« LSTM NRM Architecture

—
P(ojles. f; ' ai-qy, a;)

output layer

LSTM layer

projection layer

input layer

yi=W; *fai"‘Wz’fei
Zi = LSTM(:VL" W3r yi_l)
P(oilet, f;', ai-1,a;) = softm(W, * z;)
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BN EXPERIMENT

« Setups
— NIST OpenMT12 ZH-EN and AR-EN Task
— Apply RNNRM into N-best rescoring step

— Results are average with 5 runs (Clark et al.,
2011)

— Neural params: hidden units 100,
SGD(alpha=0.01), source-vocab 100k, target-
vocab 50k
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BN EXPERIMENT

« Results on different System Dev Testl | Test2
Baseline 43.87 | 39.84 | 42.05

orientation types +LR 44.43 | 40.53 | 42.84
+MSD 4429 | 4041 42.62

+MSLR 44.52 | 40.59 | 42.78

 All results are significantly

_ Table 2: LSTM reordering model with different
better than each baseline, orientation types for Arabic-English system.

: : System Dev Testl | Test2
using palred bOOtStrap Baseline 27.18 | 26.17 | 24.04
: +LR 27.90 | 26.58 | 24.59
resampling method +MSD 27.49 | 26.51 | 24.39
+MSLR 27.82 | 26.78 | 24.53

(Koehn, 2004)
Table 3: LSTM reordering model with different

orientation types for Chinese-English system.
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- Results on different reordering baselines

Ar-En System | Dev | Testl | Test2
Baseline_wbe | 43.87 | 39.84 | 42.05
+NRM_MSLR | 44.52 | 40.59 | 42.78
Baseline_phr 44.11 | 40.09 | 42.21
+NRM_MSLR | 44.52 | 40.73 | 42.89
Baseline_hier | 44.30 | 40.23 | 42.38
+NRM_MSLR | 44.61 | 40.82 | 42.86

Zh-En System | Dev | Testl | Test2
Baseline_.wbe | 27.18 | 26.17 | 24.04
+NRM_MSLR | 27.90 | 26.58 | 24.70
Baseline_phr 27.33 | 26.05 | 24.13
+NRM_MSLR | 27.86 | 26.46 | 24.73
Baseline_hier 27.56 | 26.29 | 24.38
+NRM_MSLR | 28.02 | 26.49 | 24.67

BN EXPERIMENT
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B ReLATED Work S

Neural network based approach has been widely
applied into SMT field

— LM: NNLM(Bengio et al., 2003), RNNLM(Mikolov et
al., 2011)

— TM: NNJM(Devlin et al., 2014),
RNNTM(Sundermeyer et al., 2014)

— RM: RAE classification method (Li et al., 2014)

14



BN CONCLUSION & FUTURE WORK NS

« Conclusion
— propose a purely lexicalized neural reordering model
— support different orientation types: LR/MSD/MSLR

— Easily integrate into rescoring & outperform baseline
systems

* Future Work

— Dissolve much more ambiguities and improve
reordering accuracy by introducing phrase-based

— Apply NRM into NMT
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