

Conversational Word Embedding for Retrievalbased Dialog System

WENTAO MA, YIMING CUI, TING LIU, DONG WANG, SHIJIN WANG, GUOPING HU

State Key Laboratory of Cognitive Intelligence, iFLYTEK Research, Research Center for SCIR, Harbin Institute of Technology iFLYTEK AI Research (Hebei)

ACL 2020

A Conversation between a father and his son in a zoo

Language habits

Conversation

Common sense

- Human conversations contain many types of information, e.g., common sense, language habits and knowledge.
 - cross-sentence: exist in conversation pair instead of single sentence
 - asymmetric: some language habits are directional, such as
 - 'why' → 'because',
 - 'congratulation' → 'thanks'

Related works

- Word representation methods
 - Static word embedding: Word2vec, GloVe, fastText...
 - Contextual word embedding: ELMo, BERT, XLNet...

Embedding Matrix

GloVe, fastText.. BERT, XLNet...

Related works

- Retrieval-based Dialog System
 - Single-turn Response Selection

Single-turn g(Q,R)

Multi-turn g(C,Q,R)

- Previous word embedding methods for conversation
 - Single sentence: the semantic correlation beyond a single sentence is missing
 - Single vector space: map the post and reply into the same vector space, which leads the reply with repeated words is easy to be selected

PR-Embedding: learn conversational word embedding from conversation pairs in two different vector spaces.

Notation

Vocabulary

 $V^p := \{v_1^p, v_2^p, ..., v_s^p\}$

Sequence

 $P = (p_1, ..., p_m)$

Post

$$V^{r} := \{v_{1}^{r}, v_{2}^{r}, ..., v_{s}^{r}\}$$

$$\mathbf{E}_{r} = \begin{array}{c|c} v_{1}^{r} & & & \\ v_{2}^{r} & & & \\ v_{2}^{r} & & & \\ v_{3}^{r} & & & \\ ... & & \\ v_{s}^{r} & & & \\ \end{array}$$

$$R = (r_1, \dots, r_n)$$

Reply

Word-level Learning								
	Post:	P_hi	P,	P_where	P_are	P_you	P_from	
Reply:	R_i	R_am	R_from	R_alabama	a R_,	R_how	R_about	R_you

	Post:	P_hi	P_,	P_where	P_are	P_you	P_from		
Reply:	R_i	R_am	R_from	R_alabama	R_,	R_how	R_about	R_you	
How to generate the cross-sentence co-occurrence window ?									

Word-level Co-occurrence

Word-level Learning

Word-level Learning

Word-level Co-occurrence

Embedding Matrix Ep', Er'

Experiment

- Datasets
 - PersonaChat dataset (Zhang et al., 2018)
 - English, multi-turn conversation dataset with profile
 - Train/Dev/Test: I33.5k/I5.7k/I5.1k utterance
 - Evaluation Metrics: hit@k
 - In-house conversation dataset
 - Chinese, single-turn conversation dataset
 - Test: 935 posts and 12,767 candidate replies (label with 'good, middle, bad') Train: 1.07 million pairs after cleaning, from Baidu Zhidao
 - Evaluation Metrics: NDCG, P@I

Experiment

- Result on PersonaChat
 - Single-turn task: compare the embedd based on BOW (bag-of-words, the av of all word embeddings), only use the current query for prediction
 - Multi-turn task: compare the embedd based on a neural network KVMemn all the context for prediction

d:		hits@1	hits@5	hits@10
aings	GloVe _{train}	12.6	39.6	63.7
	$GloVe_{emb}$	18.0	44.6	66.9
verage	BERT_{emb}	15.4	41.0	62.9
	Fasttext _{emb}	17.8	44.9	67.2
	PR-Embedding	22.4	60.0	81.1
	IR baseline [†]	21.4	_	_
	Starpace [†]	31.8	-	-
lings	Profile Memory [†]	31.8	-	-
IIIIgs	KVMemnn	32.3	62.0	79.2
	+PR-Embedding	35.9	66.1	82.6
II, use	KVMemnn (GloVe)	36.8	68.1	83.6
	+PR-Embedding	39.9	72.4	87.0

Experiment

- Result on In-house dataset
 - Single-turn task, compare with GloVe and the public embedding of DSG.
 - P@I(s): only use the candidate reply with 'good' as true
- Ablation study
 - w/o PR: change the two vector spaces with the single one, just as the previous method
 - w/o SLL: remove the sentence-level learning

		NDCG	NDCG@5	P@1	P@1(s)
labeled	$GloVe_{train} \\ DSG_{emb} \\ BERT_{emb}$	69.97 70.82 70.06	48.87 50.45 48.45	51.23 52.19 51.66	33.48 35.61 35.08
	PR-Emb	74.79	58.16	62.03	45.99
	w/o PR w/o SLL	70.68 71.65	50.60 52.03	50.48 53.48	35.19 40.86

Analysis

- Nearest tokens

 - nearest words both in post and reply space

WHY			THANKS			CONGRATULATIONS		
GloVe	P-Emb	R-Emb	GloVe	P-Emb	R-Emb	GloVe	P-Emb	R-Emb
why	why	because	thanks	thanks	welcome	congratulations	congratulations	thank
know	understand	matter	thank	asking	problem	congrats	ah	thanks
guess	oh	idea	fine	thank	today	goodness	fantastic	appreciate
SO	probably	reason	asking	good	bill	yum	bet	problem

• Four nearest tokens for the three selected words in the whole vector space

• For PR-Embedding, we select the words from the post vocabulary and give the

Summary

- We proposed a conversational word embedding method PR-Embedding, which is learned from conversational pairs in two different spaces;
- We introduce the word alignment model from SMT to generate the crosssentence window, and train the embedding in word and sentence level;
- The experimental results shows PR-Embedding can help the models select better reply by catching the information among the pairs.

wtma@iflytek.com

https://github.com/wtma/PR-Embedding

Thank you !