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Motivation
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What is that animal ?

It is  an elephant

Why is its nose so long ?

Because it needs the nose to drink water

A Conversation between a father and his son in a zoo
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Motivation
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• Human conversations contain many types of information, e.g., common sense, 

language habits and knowledge. 

• cross-sentence: exist in conversation pair instead of single sentence

• asymmetric: some language habits are directional, such as

• ‘why’        ‘because’,

•  ‘congratulation’       ‘thanks’



Related works
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• Word representation methods

• Static word embedding:  Word2vec, GloVe, fastText…

• Contextual word embedding: ELMo, BERT, XLNet…
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Related works
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• Retrieval-based Dialog System

• Single-turn Response Selection

• Multi-turn Response Selection
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Motivation
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• Previous word embedding methods for conversation

• Single sentence: the semantic correlation beyond a single sentence is missing

• Single vector space: map the post and reply into the same vector space, 

which leads the reply with repeated words is easy to be selected

Do you 
know the animal?

I don’t know either

I don’t know
Why you 

cant know this?



Contribution
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PR-Embedding:  learn conversational word embedding 

from conversation pairs in two different vector spaces.



Notation
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Model

Reply: R_i R_am R_from R_alabama R_how R_about R_youR_,

P_fromPost: P_hi P_, P_where P_are P_you

Word-level Learning

Sentence-level 
Learning

Model

P-Embedding R-Embedding
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Word-level Learning
P_fromPost:

Reply:

P_hi P_, P_where P_are P_you

R_i R_am R_from R_alabama R_how R_about R_youR_,



Model
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How to generate the cross-sentence co-occurrence window ? 

P_fromPost:

Reply:

P_hi P_, P_where P_are P_you

R_i R_am R_from R_alabama R_how R_about R_youR_,
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13

P_fromPost:

Reply:

P_hi P_, P_where P_are P_you

R_i R_am R_from R_alabama R_how R_about R_youR_,

P_fromPost:

Reply:

P_hi P_, P_where P_are P_you

R_i R_am R_from R_alabama R_how R_about R_youR_,

P2R-probablity
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Word-level Learning
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Word-level Learning
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Sentence-level Learning
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• Datasets

• PersonaChat dataset (Zhang et al., 2018)

• English, multi-turn conversation dataset with profile

• Train/Dev/Test: 133.5k/15.7k/15.1k utterance

• Evaluation Metrics: hit@k

• In-house conversation dataset

• Chinese, single-turn conversation dataset

• Test: 935 posts and 12,767 candidate replies (label with ‘good, middle, bad’)  
 Train: 1.07 million pairs after cleaning,  from Baidu Zhidao

• Evaluation Metrics: NDCG, P@1



Experiment
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• Result on PersonaChat

• Single-turn task: compare the embeddings 

based on BOW (bag-of-words, the average 

of all word embeddings), only use the 

current query for prediction

• Multi-turn task: compare the embeddings 

based on a neural network KVMemnn, use 

all the context for prediction
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• Result on In-house dataset

• Single-turn task, compare with GloVe and the 

public embedding of DSG.

• P@1(s): only use the candidate reply labeled 

with ‘good’ as true

• Ablation study

• w/o PR: change the two vector spaces with 

the single one, just as the previous method

• w/o SLL: remove the sentence-level learning

Experiment
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• Nearest tokens

• Four nearest tokens for the three selected words in the whole vector space

• For PR-Embedding, we select the words from the post vocabulary and give the 

nearest words both in post and reply space



Summary

24

• We proposed a conversational word embedding method PR-Embedding, 

which is learned from conversational pairs in two different spaces;

• We introduce the word alignment model from SMT to generate the cross-

sentence window, and train the embedding in word and sentence level;

• The experimental results shows PR-Embedding can help the models select 

better reply by catching the information among the pairs.
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wtma@iflytek.com

https://github.com/wtma/PR-Embedding
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