
PERT: Pre-training BERT with Permuted Language Model

Yiming Cui1,2,†, Ziqing Yang2, Shijin Wang2,3, Ting Liu1

1Research Center for SCIR, Harbin Institute of Technology, Harbin, China
2State Key Laboratory of Cognitive Intelligence, iFLYTEK Research, Beijing, China

3iFLYTEK AI Research (Central China), Wuhan, China
†ymcui@ieee.org

Abstract

Pre-trained Language Models (PLMs) have
been widely used in various natural language
processing tasks, owing to their powerful text
representations, which are trained on large-
scale corpora. In this paper, we propose a new
PLM called PERT to address the importance
of the local context and resolve the discrep-
ancy of pretraining-finetuning in BERT. PERT
is an auto-encoding model (like BERT) trained
with Permuted Language Model (PerLM). The
formulation of the proposed PerLM is straight-
forward. We permute a proportion of the input
sequence, and the training objective is to pre-
dict the position of the original token. More-
over, we also apply whole word masking and
n-gram masking to improve the performance of
PERT. We carried out extensive experiments on
both Chinese and English benchmarks. The ex-
perimental results show that PERT could bring
improvements over various comparable base-
lines on several tasks. Several quantitative stud-
ies are carried out to better understand PERT.
Resources are available: dummy-url

1 Introduction

Pre-trained Language Models (PLMs) have shown
excellent performance on various natural language
processing (NLP) tasks. Usually, PLMs are clas-
sified into two categories based on their training
protocols: auto-encoding and auto-regressive. The
representative work of auto-encoding PLM is the
Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et al., 2019), which mod-
els the input text through deep transformer layers
(Vaswani et al., 2017), creating deep contextual-
ized representations. The representative work of
auto-regressive PLM is the Generative Pre-training
(GPT) model (Radford et al., 2018).

The dominant pre-training task for auto-
encoding PLM is the masked language model
(MLM). The MLM pre-training task replaces a few
input tokens with masking tokens (i.e., [MASK]),

and the objective is to recover these tokens in the
vocabulary space. The formulation of MLM is
pretty simple, but it can model the contextual fea-
tures around the masking token, which is quite
similar to the continuous bag-of-words (CBOW)
in word2vec (Mikolov et al., 2013). Based on
MLM pre-training task, there are also a few vari-
ants proposed to further enhance its performance,
such as whole word masking (Devlin et al., 2019;
Sun et al., 2019; Cui et al., 2021), N-gram masking
(Devlin et al., 2019; Joshi et al., 2019; Cui et al.,
2020), etc. Following MLM pre-training scheme,
various PLMs are proposed, such as ERNIE (Sun
et al., 2019), RoBERTa (Liu et al., 2019), ALBERT
(Lan et al., 2020), ELECTRA (Clark et al., 2020),
MacBERT (Cui et al., 2021), etc.

Input Output

Original 研究表明这句话的顺序
并不影响阅读。

-

WordPiece 研 究 表 明 这 句 话 的
顺序并不影响阅读。

-

BERT 研 究 表 明 这 句 [M]
的 顺 [M] 并 不 [M] 响
阅读。

Pos7 →话
Pos10 →序
Pos13 →影

PERT 研 究 明 表 这 句 话 的
顺序并不响影阅读。

Pos2 → Pos3
Pos3 → Pos2
Pos13 → Pos14
Pos14 → Pos13

Table 1: Input and output for BERT and PERT.

However, there comes with a natural question:
Can we use pre-training task other than MLM?
To deal with this question, in this paper, we aim
to explore a pre-training task that is not derived
from MLM. The original motivation behind our
approach is quite interesting. There are many say-
ings like “Permuting several Chinese characters
does not affect reading that much”. A vivid illus-
tration is depicted in Figure 1, where we provide
both Chinese and English examples. As we can

dummy-url


see, with a first glimpse, we might not notice that
some words in the sentence are disordered, but we
can still grasp the central meaning of the sentence.
This phenomenon makes us curious whether we
can model the contextual representation via per-
muted sentences. To investigate this question, we
propose a new pre-training task called permuted
language model (PerLM). The proposed PerLM
tries to recover the word orders from a disordered
sentence, and the objective is to predict the position
of the original word. We pre-train both Chinese and
English PERT to examine their effectiveness. Ex-
tensive experiments are conducted on both Chinese
and English NLP datasets, ranging from sentence-
level to document-level, such as machine reading
comprehension, text classification, etc. The results
show that the proposed PERT can bring improve-
ments on a few tasks. While in the meantime, we
also discover their deficiencies in others. The con-
tributions of this paper are listed as follows.

• We propose a non-MLM-like pre-training task,
called permuted language model, which tries to
recover the shuffled input text into the right order.

• Experimental results show both positive and neg-
ative results, and further analyses might be help-
ful in creating non-MLM-like pre-training tasks.

2 Related Work

In this section, we revisit the techniques of the
representative pre-trained language models in the
recent natural language processing field. Text repre-
sentations have made significant progress in recent
years after the emergence of the pre-trained lan-
guage models. The pre-trained language model
utilizes large-scale text corpora and unsupervised
(or self-supervised) learning algorithms to extract
text semantics in a continuous space. This paper
mainly focuses on the pre-trained language model
for natural language understanding (NLU). A list
of such PLMs are listed in Table 2, where we also
list the new model PERT in it. Next, we will briefly
introduce these models and elaborate the difference
from PERT.

BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2019) has proven
to be successful in various NLU tasks, which is a
representative auto-encoding PLM. There are two
pre-training tasks for BERT. Masked Language
Model (MLM): The MLM task randomly masks
several tokens in the input sequence and requires

Type Emb Mask LM Pair

GPT (Radford et al., 2018) AR T/S/P - LM -
BERT (Devlin et al., 2019) AE T/S/P T MLM NSP
ERNIE (Sun et al., 2019) AE T/S/P T/E/Ph MLM NSP
XLNet (Yang et al., 2019) AR T/S/P - PLM -
RoBERTa (Liu et al., 2019) AE T/S/P T MLM -
ALBERT (Lan et al., 2020) AE T/S/P T MLM SOP
ELECTRA (Clark et al., 2020) AE T/S/P T Gen-Dis -
MacBERT (Cui et al., 2021) AE T/S/P WWM/NM Mac SOP

PERT AE T/S/P WWM/NM PerLM -

Table 2: Comparisons of the pre-trained language mod-
els. (AE: Auto-Encoding, AR: Auto-Regressive, T: To-
ken, S: Segment, P: Position, W: Word, E: Entity, Ph:
Phrase, WWM: Whole Word Masking, NM: N-gram
Masking, NSP: Next Sentence Prediction, SOP: Sen-
tence Order Prediction, MLM: Masked LM, PLM: Per-
mutation LM, Mac: MLM as correction)

to recover these tokens in the output. To correctly
predict the original tokens, the model should utilize
bidirectional context around the masking position.
Next Sentence Prediction (NSP): The NSP task
mainly focuses on the relationship in a larger con-
text. It discriminates whether a sentence is the next
sentence of another one.

To further improve the difficulties in the MLM
task, Devlin et al. (2019) further proposed a tech-
nique called whole word masking (wwm). In this
setting, instead of randomly selecting WordPiece
(Wu et al., 2016) tokens to mask, we always mask
all of the tokens corresponding to a whole word
at once. The whole word masking alleviates the
“input information leaking” issue and has proven
to be more effective than original MLM in various
tasks (Cui et al., 2021). Furthermore, we can mask
a consecutive N-gram to make MLM more difficult.
The N-gram masking has also proven to be effec-
tive in various PLMs, such SpanBERT (Joshi et al.,
2019), MacBERT (Cui et al., 2020), etc.

While MLM and its variants have been dominant
in the design of various PLMs, it is intriguing to in-
vestigate other pre-training approaches other than
MLM. ELECTRA (Clark et al., 2020) employs
a new generator-discriminator framework that is
similar to GAN (Goodfellow et al., 2014). ELEC-
TRA is largely different from BERT-variant, but it
still utilizes MLM in training the generator. Struct-
BERT (Wang et al., 2019) proposes to incorporate
language structures for pre-training. Though it uses
shuffled input, its motivation and task design are
fairly different from ours, such as we do not use
MLM-style prediction, etc.

In this paper, we take a step further on design-
ing pre-training tasks. We design a pre-training



task that does not adopt the MLM task, called per-
muted language model (PerLM). PerLM utilizes
shuffled input text, and the objective is to predict
the position of the original token.

3 PERT

3.1 Overview
An overview of PERT is depicted in Figure 1. As
we can see that the proposed PERT shares identi-
cal neural architecture with BERT, while there is a
slight difference in the input and the training objec-
tive. The proposed PERT uses a shuffled sentence1

as the input, and the training objective is to predict
the position of the original token.

e[CLS]

Original

Shuffled

Word Emb

Segment Emb

Position Emb

eA

e0 e1

eA

e我 e欢

eA

e2 e3

eA

e喜 e吃

eA

e4 e5

eA

e果 e苹

eA

e6 e7

eA

e[SEP] e他

eB

e8 e9

eB

e也 e是

eB

e10

[CLS] 我

e[SEP]

eB

e11

喜 吃欢 苹 果 [SEP] [SEP]他 也 是

[CLS] 我 欢 吃喜 果 苹 [SEP] [SEP]他 也 是

+ + + + + + + + + + + +

+ + + + + + + + + + + +

PERT

PerLM pos3 pos2 pos6 pos5

Figure 1: Neural architecture of PERT.

3.2 Permuted Language Model
As stated before, following various well-known
PLMs, such as RoBERTa (Liu et al., 2019), we do
not employ NSP-like pre-training tasks in PERT.
The only pre-training task used in our PERT is the
proposed Permuted Language Model (PerLM).2

The formulation of PerLM is as follows.

• We use whole word masking as well as N-gram
masking for selecting candidate tokens for mask-
ing, with a percentage of 40%, 30%, 20%, 10%
for word-level unigram to 4-gram. This is identi-
cal to MacBERT (Cui et al., 2021) setting.

• Following previous works, we use a percent-
age of 15% input words for masking purposes.
Among which,

– We randomly select a set of 90% tokens and
shuffle their orders. Note that the shuffle
process only takes place for these 90% to-
kens, not the whole input sequence.

1The “sentence” here can be a consecutive text sequence
and does not exactly represent the meaning in linguistic view.

2To distinguish from the pre-training task (permutation
LM) in XLNet (Yang et al., 2019), we use the term “permuted
language model (PerLM)” for our PERT in this paper.

– For the rest of 10% tokens, we keep them
unchanged, treating them as negatives.

As we can see that PerLM is as simple as the
original MLM, while PerLM features the following
characters. 1) PerLM does not employ the artifi-
cial token [MASK] for masking, which alleviates
the pretraining-finetuning discrepancy issue (but
could still suffer from unnatural word orders). 2)
The prediction space for PerLM is the input se-
quence rather than the whole vocabulary, making it
computationally efficient than MLM.

3.3 Pre-training Stage
Formally, given a pair of sequences A =
{A1, . . . , An} and B = {B1, . . . , Bm}, we first
use the method described in Section 3.2 to create
new input sequence pairs A′ = {A′

1, . . . , A
′
n} and

B′ = {B′
1, . . . , B

′
m}, where some of the word po-

sitions are switched. Then we concatenate two
sequences to form the input sequence X of PERT.

X = [CLS] A′
1 . . . A

′
n [SEP] B′

1 . . . B
′
m [SEP] (1)

Then, PERT converts X into a contextualized
representation H ∈ RN×d through an embedding
layer, consisting of word embedding, positional em-
bedding, and token type (segment) embedding, and
a consecutive L-layer transformer, where N is the
maximum sequence length, and d is the dimension
of hidden layers.

H(0) = Embedding(X) (2)

H(i) = Transformer(H(i−1)), (3)

Similar to MLM and Mac (MacBERT objec-
tive), we only need to predict the chosen posi-
tions in PerLM. We gather a subset with respect to
these positions, forming the candidate represen-
tation Hm ∈ Rk×d, where k is the number of
the chosen tokens. According to the definition of
PerLM, we adopt a masking ratio of 15%, and thus
k = ⌊N × 15%⌋. Then we use a feed-forward
dense layer (FFN), followed by a dropout and layer
normalization layer.

H̃m = LayerNorm(DO(FFN(Hm)))) (4)

To calculate the positions of the original tokens,
we simply make a dot product between the H̃m and
H . Then we add a bias term b ∈ RL and use the
softmax function to get normalized probabilities.

pi = softmax(H̃m
i H

⊤ + b), pi ∈ RL (5)



Finally, we use the standard cross-entropy loss
to optimize the pre-training task.

L = − 1

M

M∑
i=1

yi log pi (6)

3.4 Fine-tuning Stage

PERT follows the same paradigm as in BERT to
perform fine-tuning on various downstream tasks,
as they share the same main architecture. That is to
say, PERT can directly fit in any fine-tuning script
that is used for BERT or similar. It is worth noting
that, unlike the pre-training stage, we use the
natural input sequence rather than changing
the word orders in the fine-tuning stage.

4 Experiments on Chinese Tasks

4.1 Pre-training Setups

We largely follow the training recipe of MacBERT,
where we illustrate detail as follows. All models
are trained from scratch.

Data: We use the training data as in MacBERT.
It consists of the Chinese Wikipedia dump3, en-
cyclopedia, community question answering, news
articles, etc. The total training data has 5.4B words
and takes about 20G of disk space. Tokenization:
We use WordPiece tokenizer (Wu et al., 2016) as
in BERT. To detect the Chinese word boundaries,
we use LTP (Che et al., 2010) for word segmenta-
tion. Note that the Chinese word segmentation is
only used for selecting the whole word to perform
whole word masking, i.e., only affect which tokens
are chosen for masking. The input for PERT is
still handled by the WordPiece tokenizer. Vocab-
ulary: We directly use the vocabulary of Chinese
BERT-base and other PLMs with a vocabulary size
of 21128. Hyper-parameters: We use a maximum
sequence length of 512 throughout the whole pre-
training process. Optimization: We use a batch
size of 416 (base-level) or 128 (large-level) with
an initial learning rate of 1e-4. We perform a linear
warmup schedule with the first 10k steps. The total
training step is 2M. We use ADAM (Kingma and
Ba, 2014) with weight decay (rate = 0.1) optimizer
with beta values (0.9, 0.999) and an epsilon value
1e-6. Training Device: The training was done on
a single TPU v3-8 (128G HBM).

Following previous works, we train two PERT
models: PERT-base (12-layer, 12-heads, 768-dim)

3https://dumps.wikimedia.org/zhwiki/latest/

and PERT-large (24-layer, 16-heads, 1024-dim),
which are the same as BERT settings.

4.2 Fine-tuning Setups

We choose the following ten popular Chinese
NLU datasets. Machine Reading Comprehension
(MRC): CMRC 2018 (Cui et al., 2019), DRCD
(Shao et al., 2018). Text Classification (TC):
XNLI (Conneau et al., 2018), LCQMC (Liu et al.,
2018), BQ Corpus (Chen et al., 2018), ChnSenti-
Corp (Tan and Zhang, 2008), TNEWS (Xu et al.,
2020), OCNLI (Hu et al., 2020). Named En-
tity Recognition (NER): MSRA-NER (SIGHAN
2006) (Levow, 2006), People’s Daily4. The de-
tailed statistics are listed in Appendix A.

For fair comparisons, we use the mod-
els trained on the same amount of corpora
(20G), including BERTbase (i.e., BERT-wwm-
ext), RoBERTabase (i.e., RoBERTa-wwm-ext),
ELECTRAbase, MacBERTbase. Also, to ensure ro-
bust experimentation, we carry out each experi-
ment 10 times with different random seeds and re-
port both the maximum and average scores, except
for the grammar checking tasks. The fine-tuning
scripts are based on original BERT implementation,
including run_classifier.py for classification
tasks, and run_squad.py for MRC tasks.5

4.3 Results on MRC Tasks

The results on MRC tasks are shown in Figure
3. The evaluation metrics for MRC tasks are the
exact match (EM) and F1. As we can see that
the proposed PERT yields moderate improvements
over MacBERT and is consistently outperform the
others, setting state-of-the-art performances on sev-
eral subsets. This demonstrates that by permuting
words in the input sequence, PERT learns both
short-range and long-range text inference abilities,
which is critical in MRC tasks.

4.4 Results on Text Classification Tasks

The results on text classification (TC) tasks are
shown in Table 4. Unfortunately, the proposed
PERT does not perform well on text classification
tasks. We conjecture that the permuted input text
in the pre-training stage brings difficulties in under-
standing short text compared to MRC tasks.

4https://github.com/ProHiryu/bert-chinese-ner
5https://github.com/google-research/bert



System CMRC 2018 DRCD
D-EM D-F1 T-EM T-F1 C-EM C-F1 D-EM D-F1 T-EM T-F1

BERTbase 67.1 (65.6) 85.7 (85.0) 71.4 (70.0) 87.7 (87.0) 24.0 (20.0) 47.3 (44.6) 85.0 (84.5) 91.2 (90.9) 83.6 (83.0) 90.4 (89.9)
RoBERTabase 67.4 (66.5) 87.2 (86.5) 72.6 (71.4) 89.4 (88.8) 26.2 (24.6) 51.0 (49.1) 86.6 (85.9) 92.5 (92.2) 85.6 (85.2) 92.0 (91.7)
ELECTRAbase 68.4 (68.0) 84.8 (84.6) 73.1 (72.7) 87.1 (86.9) 22.6 (21.7) 45.0 (43.8) 87.5 (87.0) 92.5 (92.3) 86.9 (86.6) 91.8 (91.7)
MacBERTbase 68.5 (67.3) 87.9 (87.1) 73.2 (72.4) 89.5 (89.2) 30.2 (26.4) 54.0 (52.2) 89.4 (89.2) 94.3 (94.1) 89.5 (88.7) 93.8 (93.5)
PERTbase 68.5 (68.1) 87.2 (87.1) 72.8 (72.5) 89.2 (89.0) 28.7 (28.2) 55.4 (53.7) 89.5 (88.9) 93.9 (93.6) 89.0 (88.5) 93.5 (93.2)

RoBERTalarge 68.5 (67.6) 88.4 (87.9) 74.2 (72.4) 90.6 (90.0) 31.5 (30.1) 60.1 (57.5) 89.6 (89.1) 94.8 (94.4) 89.6 (88.9) 94.5 (94.1)
ELECTRAlarge 69.1 (68.2) 85.2 (84.5) 73.9 (72.8) 87.1 (86.6) 23.0 (21.6) 44.2 (43.2) 88.8 (88.7) 93.3 (93.2) 88.8 (88.2) 93.6 (93.2)
MacBERTlarge 70.7 (68.6) 88.9 (88.2) 74.8 (73.2) 90.7 (90.1) 31.9 (29.6) 60.2 (57.6) 91.2 (90.8) 95.6 (95.3) 91.7 (90.9) 95.6 (95.3)
PERTlarge 72.2 (71.0) 89.4 (88.8) 76.8 (75.5) 90.7 (90.4) 32.3 (30.9) 59.2 (58.1) 90.9 (90.8) 95.5 (95.2) 91.1 (90.7) 95.2 (95.1)

Table 3: Results on Chinese MRC tasks: CMRC 2018 (Simplified Chinese) and DRCD (Traditional Chinese).
We report the maximum and average scores (in brackets) for each set. Overall best performances are depicted in
boldface (base-level and large-level are marked individually). D: Dev set, T: Test set, C: Challenge set.

System XNLI LCQMC BQ Corpus ChnSentiCorp TNEWS OCNLI
Dev Test Dev Test Dev Test Dev Test Dev Dev

BERTbase 79.4 (78.6) 78.7 (78.3) 89.6 (89.2) 87.1 (86.6) 86.4 (85.5) 85.3 (84.8) 95.4 (94.6) 95.3 (94.8) 57.0 (56.6) 76.0 (75.3)
RoBERTabase 80.0 (79.2) 78.8 (78.3) 89.0 (88.7) 86.4 (86.1) 86.0 (85.4) 85.0 (84.6) 94.9 (94.6) 95.6 (94.9) 57.4 (56.9) 76.5 (76.0)
ELECTRAbase 77.9 (77.0) 78.4 (77.8) 90.2 (89.8) 87.6 (87.3) 84.8 (84.7) 84.5 (84.0) 93.8 (93.0) 94.5 (93.5) 56.1 (55.7) 76.1 (75.8)
MacBERTbase 80.3 (79.7) 79.3 (78.8) 89.5 (89.3) 87.0 (86.5) 86.0 (85.5) 85.2 (84.9) 95.2 (94.8) 95.6 (94.9) 57.4 (57.1) 77.0 (76.5)
PERTbase 78.8 (78.1) 78.1 (77.7) 88.8 (88.3) 86.3 (86.0) 84.9 (84.8) 84.3 (84.1) 94.0 (93.7) 94.8 (94.1) 56.7 (56.1) 75.3 (74.8)

RoBERTalarge 82.1 (81.3) 81.2 (80.6) 90.4 (90.0) 87.0 (86.8) 86.3 (85.7) 85.8 (84.9) 95.8 (94.9) 95.8 (94.9) 58.8 (58.4) 78.5 (78.2)
ELECTRAlarge 81.5 (80.8) 81.0 (80.9) 90.7 (90.4) 87.3 (87.2) 86.7 (86.2) 85.1 (84.8) 95.2 (94.6) 95.3 (94.8) 57.2 (56.9) 78.8 (78.4)
MacBERTlarge 82.4 (81.8) 81.3 (80.6) 90.6 (90.3) 87.6 (87.1) 86.2 (85.7) 85.6 (85.0) 95.7 (95.0) 95.9 (95.1) 59.0 (58.8) 79.0 (78.7)
PERTlarge 81.0 (80.4) 80.4 (80.1) 90.0 (89.7) 87.2 (86.9) 86.3 (85.8) 85.0 (84.8) 94.5 (94.0) 95.3 (94.8) 57.4 (57.2) 78.1 (77.8)

Table 4: Results on text classification tasks: XNLI, LCQMC, BQ Corpus, ChnSentiCorp, TNEWS, and OCNLI.

4.5 Results on NER Tasks

The results on named entity recognition (NER)
tasks are shown in Figure 5. We extract the pre-
dicted entities and use seqeval6 to evaluate the
NER performance in terms of P/R/F metrics. As
we can see that PERT yields relatively consistent
improvements over all baseline systems, indicating
its good abilities in sequence tagging tasks.

Based on all the experiments above, we make
several conclusions as follows. 1) PERT yields
better performances on MRC and NER tasks, but
it does not perform well on TC tasks; 2) The
whole word masking and n-gram masking make
PERT more sensitive to the word/phrase bound-
aries, which is helpful in span-extraction MRC and
NER tasks. 3) The input sequence for pre-training
PERT is shuffled to some extent. According to the
results of TC tasks, PERT yields inferior perfor-
mances. This means text classification tasks are
more sensitive to word permutation.

Some of the word permutations will bring a com-
plete meaning change for the input text. This will
affect all the fine-tuning tasks presented above.
However, TC tasks suffer from this issue more than
MRC or NER tasks, as the input text of TC tasks is
relatively shorter than the others. MRC and NER
task also suffers from word permutation. However,

6https://github.com/chakki-works/seqeval

input text for MRC tasks is typically long, and
several permutations may not change the whole
narrative flow of the passage. For NER tasks, such
text permutation may not affect the NER process,
as the named entities only take a small proportion
of the whole input text.

System MSRA (Test) People’s Daily (Dev)

BERTbase 95.3 (94.9) 95.3 (95.1)

RoBERTabase 95.5 (95.1) 95.1 (94.9)

ELECTRAbase 95.4 (95.0) 95.1 (94.9)

MacBERTbase 95.3 (95.1) 95.2 (94.9)

PERTbase 95.6 (95.3) 95.3 (95.1)

RoBERTalarge 95.5 (95.5) 95.7 (95.4)

ELECTRAlarge 95.0 (94.8) 94.9 (94.8)

MacBERTlarge 96.2 (95.9) 95.8 (95.7)

PERTlarge 96.2 (96.0) 96.1 (95.8)

Table 5: Results (F-score) on Chinese NER tasks.

4.6 Results on Grammar Checking Tasks

Besides traditional public Chinese NLU tasks, we
also test PERT on Word Order Recovery (WOR),
which is a part of the grammar checking task.

4.6.1 Task Definition and Modeling
The objective of the WOR task is to fix the gram-
mar errors caused by incorrect word orders. To
be specific, the examples are the sentences where
some words have been moved to incorrect posi-



tions. For example, in the sentence “我每天一个
吃苹果(I everyday an eat apple)” there is an er-
ror span “一个(an)吃(eat)” where the order of “一
个(an)” and “吃(eat)” have been swapped. WOR
task asks the model to recover the correct sentence
“我每天吃一个苹果(I everyday eat an apple).” A
sentence can have multiple error spans. To simplify
the problem, we only consider the case where only
one word has been moved in each span.

We treat the WOR task as a sequence labeling
task and take the BIEO tagging scheme. The inputs
to the model are incorrect sentences; the label of
each word in the sentences stands for whether the
word is in the right position (O), or it is the begin-
ning of an error span (B), or it should be moved to
the last of the error span (I), or it should be moved
to the beginning of the error span (E). For example,
the sentence “我每天一个吃苹果” is labeled as
“我(O)每(O)天(O)一(B)个(I)吃(E)苹(O)果(O)”.
With the tagging scheme above, we can easily
recover the correct word orders in the sentence.

4.6.2 Results
We test WOR task under four domains (train/dev):
Wikipedia (990K/86K), Formal Doc. (1.4M/33K),
Customs (682K/34K), Legal (1.8M/13K). We re-
port precision, recall, and F1 scores for the follow-
ing experiments. The results are shown in Table
6. PERT yields consistent and significant improve-
ments over all baseline systems in terms of all eval-
uation metrics (P/R/F). This is in accordance with
our expectations, as the fine-tuning task is quite
similar to the pre-training task of PERT. Though
the fine-tuning is performed in a sequence tagging
manner (just like NER), it still can benefit from the
pre-training of PERT, which focuses on ordering
the words in the correct position.

System Wiki Formal Doc. Customs Legal

BERTGoogle
base 79.8 89.6 85.4 92.0

RoBERTabase 80.4 90.1 86.3 92.2
ELECTRAbase 63.6 84.7 70.3 88.4
MacBERTbase 80.5 90.2 86.4 92.3
PERTbase 82.9 91.2 88.2 92.9

Table 6: Results on in-house grammar checking tasks.

5 Experiments on English Tasks

5.1 Pre-training Setups

We largely follow the training recipe of BERT,
where we illustrate detail as follows. All models

are trained from scratch.
Data: We use English Wikipedia and BookCor-

pus as the pre-training data, which is widely used
in the previous literature. Tokenization: We use
WordPiece tokenizer (Wu et al., 2016) as in BERT.
Vocabulary: We directly use the vocabulary of En-
glish BERT-base-uncased with a vocabulary size of
30522. Hyper-parameters: We use a maximum
sequence length of 512 throughout the whole pre-
training process. Optimization: We use a batch
size of 416 (base-level) or 128 (large-level) with
an initial learning rate of 1e-4. We perform a linear
warmup schedule with the first 10k steps. The total
training step is 2M. We use ADAM (Kingma and
Ba, 2014) with weight decay (rate = 0.1) optimizer
with beta values (0.9, 0.999) and an epsilon value
1e-6. Training Device: The training was done on a
single TPU v3-8 (128G HBM). Similar to Chinese
PERT, we train base and large-level PERT models.

5.2 Fine-tuning Setups
We choose the following six popular English NLU
datasets: SQuAD (Rajpurkar et al., 2016), SQuAD
2.0 (Rajpurkar et al., 2018), MNLI (Williams
et al., 2018), SST-2 (Socher et al., 2013), CoLA
(Warstadt et al., 2019), and MRPC (Dolan and
Brockett, 2005). The fine-tuning settings for each
task are shown in Appendix A. Note that, for all
experiments on English tasks, we do not use addi-
tional tricks that were used in other papers, such as
data augmentation, fine-tuning from MNLI check-
points, etc. We report five-run average scores for
our experiments.

System SQuAD SQuAD 2.0 MNLI SST-2 CoLA MRPC
EM F1 EM F1 Acc Acc M.C. Acc

BERTbase 80.8 88.5 - - 84.4 92.7 60.6 86.7
BERTbase

† 81.2 88.5 72.4 75.4 84.4 92.6 59.3 86.0
RoBERTabase - 90.4 - 79.1 84.7 92.5 - -
XLNetbase - - 78.4 81.3 85.8 92.6 - -
ALBERTbase 82.1 89.3 76.1 79.1 81.9 89.4 - -
PERTbase 84.8 91.3 78.3 81.0 84.5 92.0 61.2 87.5

BERTlarge 84.1 90.9 78.7 81.9 86.6 93.2 60.6 88.0
BERTlarge-wwm

† 87.4 93.4 82.8 85.6 87.3 93.4 63.1 87.2
RoBERTalarge - 93.6 - 87.3 89.0 95.3 - -
XLNetlarge 88.2 94.0 85.1 87.8 88.4 94.4 65.2 90.0
ALBERTlarge 84.1 90.9 79.0 82.1 83.8 90.6 - -
PERTlarge 87.4 93.3 83.5 86.3 87.6 93.4 65.7 87.3

Table 7: Development set results on English NLU tasks.
The system marked with † means the reproduced results
(rerun). We only list those model variants that were
trained on Wikibooks. M.C.: Matthews correlation.

5.3 Results
We report EM/F1 for SQuAD and SQuAD 2.0, ac-
curacy for MNLI, SST-2, and MRPC, Matthews



300K 500K 1000K 1300K 1500K 2000K

0.0

0.2

0.4

0.6

0.8

1.0

1.2

CMRC 2018
DRCD

(a) MRC

300K 500K 1000K 1300K 1500K 2000K
0.5

0.0

0.5

1.0

1.5

XNLI
LCQMC
BQ Corpus
ChnSentiCorp
TNEWS
OCNLI

(b) TC

300K 500K 1000K 1300K 1500K 2000K

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

MSRA
PD

(c) NER

Figure 2: Performance on MRC, TC, and NER tasks with different pre-training steps.

System CMRC 2018 XNLI TNEWS OCNLI AverageD-EM D-F1 T-EM T-F1 C-EM C-F1 Dev Test Dev Dev

PERTbase (no limit) 65.4 85.0 70.2 87.3 22.4 45.6 74.8 74.4 54.5 70.6 65.02
┗Word 59.3 80.6 64.8 83.5 12.6 32.2 73.2 72.1 53.2 69.3 60.08
┗N-gram 62.2 82.5 67.3 84.8 17.2 36.1 73.4 73.2 53.8 69.5 62.00
┗Sentence 63.7 83.2 69.1 86.2 16.8 38.0 74.3 73.0 54.1 70.0 62.84

Table 8: Permutation within different granularities: word, N-gram, and sentence. We report five-run average scores.

correlation for CoLA. The results are shown in
Table 7. Similar to the results of Chinese NLU
tasks, PERTbase yields better performance on MRC
tasks and moderate improvements on a few TC
tasks. However, we noticed that PERTlarge per-
forms worse than the others on most of the tasks.

6 Analysis

In this section, we will look deeper into PERT with
quantitative analyses. We use Chinese PERTbase
for all analyses in the following subsections.

6.1 Performance on Different Training Steps

Just like the performance curve for fine-tuning
tasks, the optimum performance for each fine-
tuning task may not happen at the same pre-training
step. To investigate the performance of different
types of the fine-tuning task, we plot their perfor-
mance on 300K, 500K, 1000K, 1300K, 1500K, and
2000K pre-training steps. We use the performance
of 300K as the baseline and calculate the gap to the
baseline in terms of different training steps, where
a positive value means a performance growth and a
negative value for decrease. We report F1 for MRC
tasks, accuracy for TC tasks, and F1 for NER tasks.
The results are shown in Figure 2.

For MRC and NER tasks, we see relatively con-
sistent performance improvements with the growth
of pre-training steps. However, for TC tasks, the
performance for some tasks reaches its optimum

at 1000K to 1300K pre-training steps, such as BQ
Corpus and TNEWS. These results indicate that it
is necessary to “harvest” the pre-trained model in
an earlier pre-training step if the performance of a
specific task is considered.

6.2 Different Permutation Granularities

In the formulation of PERT, we did not make re-
strictions on the permuting granularity, i.e., we
directly permute input text in token-level, and any
word can be replaced by another word in the pas-
sage. However, what if we permute within a com-
plete word/N-gram/sentence? Such restrictions
will make the input text more readable as the per-
mutation is done within a linguistic unit rather than
the whole sequence. We compare the performance
by permuting the input text within different gran-
ularities. We pre-train PERTbase with 300k steps
and observe their performances on CMRC 2018,
XNLI, TNEWS, and OCNLI tasks. The results are
shown in Table 8.

Among various permutation granularities, PERT
with no permutation limit yields the best perfor-
mances on both tasks. We noticed that if we choose
a smaller granularity (such as word), the system per-
formance goes the worst. Though using a smaller
granularity will make the input text more readable,
it is less challenging for the pre-training task and
thus cannot extract useful semantics for text repre-
sentation.



System CMRC 2018 XNLI TNEWS OCNLI AverageD-EM D-F1 T-EM T-F1 C-EM C-F1 Dev Test Dev Dev

PERTbase (local) 64.1 84.0 69.1 86.5 21.0 43.3 74.1 74.4 54.5 70.6 64.16
┗Global 61.1 81.4 65.8 84.3 15.8 36.2 73.6 74.0 55.4 69.4 61.70
┗Local + Global 63.2 83.6 67.7 85.8 19.3 42.0 74.6 74.6 55.1 70.0 63.59

Table 9: Comparison of local prediction (default) and global prediction.

System CMRC 2018 XNLI TNEWS OCNLI AverageD-EM D-F1 T-EM T-F1 C-EM C-F1 Dev Test Dev Dev

PERTbase (partial) 64.1 84.0 69.1 86.5 21.0 43.3 74.1 74.4 54.5 70.6 64.16
┗Full Prediction 63.7 84.1 68.0 86.1 18.7 40.9 74.3 73.9 54.2 71.0 63.49

Table 10: Comparison of partial prediction (default) and full prediction.

6.3 Global v.s. Local Prediction

The output space of PERT is the whole input se-
quence (the length of input), which is different from
the MLM that predicts in the vocabulary space. In
this section, we modify the output of PERT to di-
rectly predict the original word in the vocabulary
space instead of its position in the sequence. We
pre-train PERTbase with 300K training steps.7 The
results are shown in Table 9.

The experimental results show that predicting in
the vocabulary space is not necessary for PerLM,
which is significantly worse than predicting on the
local input sequence, where an average of 2.46
performance gap is observed. Unfortunately, com-
bining both local and glocal prediction (i.e., both
predict the original token’s position and the exact
word in the vocabulary space) does not yield better
performance than the local prediction only. This
reminds us that predicting the missing word in the
global (vocabulary) space is not always necessary
for pre-training tasks.

6.4 Partial v.s. Full Prediction

Most of the pre-trained language model that adopts
MLM-like pre-training task uses partial prediction.
The partial prediction only makes predictions on
the masked tokens rather than the whole input se-
quence (full prediction). Through the experiments
in ELECTRA (Clark et al., 2020), the authors
present that the full prediction yields better perfor-
mance than the partial prediction, and thus ELEC-
TRA adopts full prediction for the discriminator
using replaced token detection (RTD). However,

7Note that the hyperparameter for this PERT (as well as
the one in Section 6.4) is slightly different from PERTbase in
Section 6.2, and thus their baseline results are different.

does it apply to other pre-training tasks other than
RTD? In this experiment, we compare the results
on pre-training with full prediction and partial pre-
diction. We pre-train PERTbase with 300K training
steps. The results are shown in Table 10.

As we can see that full prediction does not yield
better performance in PERT, where its performance
is significantly worse in MRC tasks and similar per-
formance in text classification tasks. This demon-
strates that it is not always effective to use full
prediction in pre-training tasks and should be ad-
justed to the nature of the designed pre-training
task.

7 Conclusion

In this paper, we propose a new pre-trained lan-
guage model, called PERT, which uses Permuted
Language Model (PerLM) as the pre-training task.
The objective of PerLM is to predict the position
of the original token in a shuffled input text, which
is different from the MLM-like pre-training task.
To evaluate the performance of PERT, we carried
out extensive experiments on both Chinese and En-
glish NLU tasks. The experimental results show
that PERT yields improvements on MRC and NER
tasks but does not perform that well on TC tasks.
Additional quantitative analyses on PERT are also
performed to better understand our model, and we
make several observations that are different from
the previous works. We hope the trial of PERT can
inspire our community to design non-MLM-like
pre-training tasks for text representation learning.

Limitations

In this paper, we propose PERT to explore whether
it is possible to learn text representations from a



non-MLM-like pre-training task. The presented
results (on both Chinese and English) show that
PERT achieves better performance on MRC and
NER tasks but not on classification tasks. The in-
ferior results on classification tasks remind us that
a pre-training task might not always be friendly to
all NLU tasks and sometimes may pose another
issue in creating pre-trained language models. In
this study, the proposed method does resolve one
of the most famous issues in the auto-encoding pre-
trained model: “pre-training and fine-tuning dis-
crepancy”, that PERT does not employ any mask-
ing tokens. However, the permuted word order
makes the pre-training sentence unnatural to the
original sentence, which creates another type of dis-
crepancy. Through our experiments and analysis,
we think that though it is necessary to study those
existing issues in the current pre-training tasks, we
might seek another path – try to explore how to
place the right model on the right task, i.e., embrace
both positive and negative effect and use them in a
positive way.

References
Wanxiang Che, Zhenghua Li, and Ting Liu. 2010. Ltp:

A chinese language technology platform. In Pro-
ceedings of the 23rd International Conference on
Computational Linguistics: Demonstrations, pages
13–16. Association for Computational Linguistics.

Jing Chen, Qingcai Chen, Xin Liu, Haijun Yang, Daohe
Lu, and Buzhou Tang. 2018. The BQ corpus: A large-
scale domain-specific Chinese corpus for sentence
semantic equivalence identification. In Proceedings
of the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4946–4951, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In ICLR.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin
Wang, and Guoping Hu. 2020. Revisiting pre-trained
models for Chinese natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings,

pages 657–668, Online. Association for Computa-
tional Linguistics.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, and
Ziqing Yang. 2021. Pre-training with whole word
masking for chinese bert. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing,
29:3504–3514.

Yiming Cui, Ting Liu, Wanxiang Che, Li Xiao, Zhipeng
Chen, Wentao Ma, Shijin Wang, and Guoping Hu.
2019. A Span-Extraction Dataset for Chinese Ma-
chine Reading Comprehension. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5886–5891, Hong Kong,
China. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing
Systems 27, pages 2672–2680. Curran Associates,
Inc.

Hai Hu, Kyle Richardson, Liang Xu, Lu Li, Sandra
Kuebler, and Larry Moss. 2020. Ocnli: Original
chinese natural language inference. In Findings of
EMNLP.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2019. Spanbert:
Improving pre-training by representing and predict-
ing spans. arXiv preprint arXiv:1907.10529.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Confer-
ence on Learning Representations, pages 1–17.

Gina-Anne Levow. 2006. The third international Chi-
nese language processing bakeoff: Word segmenta-
tion and named entity recognition. In Proceedings of

https://www.aclweb.org/anthology/D18-1536
https://www.aclweb.org/anthology/D18-1536
https://www.aclweb.org/anthology/D18-1536
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://www.aclweb.org/anthology/2020.findings-emnlp.58
https://www.aclweb.org/anthology/2020.findings-emnlp.58
https://doi.org/10.1109/TASLP.2021.3124365
https://doi.org/10.1109/TASLP.2021.3124365
https://www.aclweb.org/anthology/D19-1600
https://www.aclweb.org/anthology/D19-1600
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://arxiv.org/abs/2010.05444
https://arxiv.org/abs/2010.05444
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://www.aclweb.org/anthology/W06-0115
https://www.aclweb.org/anthology/W06-0115
https://www.aclweb.org/anthology/W06-0115


the Fifth SIGHAN Workshop on Chinese Language
Processing, pages 108–117, Sydney, Australia. Asso-
ciation for Computational Linguistics.

Xin Liu, Qingcai Chen, Chong Deng, Huajun Zeng, Jing
Chen, Dongfang Li, and Buzhou Tang. 2018. Lcqmc:
A large-scale chinese question matching corpus. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 1952–1962.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 26, pages
3111–3119. Curran Associates, Inc.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789,
Melbourne, Australia. Association for Computational
Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392. Associ-
ation for Computational Linguistics.

Chih Chieh Shao, Trois Liu, Yuting Lai, Yiying Tseng,
and Sam Tsai. 2018. Drcd: a chinese machine
reading comprehension dataset. arXiv preprint
arXiv:1806.00920.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. 2019. Ernie: Enhanced represen-
tation through knowledge integration. arXiv preprint
arXiv:1904.09223.

Songbo Tan and Jin Zhang. 2008. An empirical study
of sentiment analysis for chinese documents. Expert
Systems with applications, 34(4):2622–2629.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Wei Wang, Bin Bi, Ming Yan, Chen Wu, Zuyi Bao,
Jiangnan Xia, Liwei Peng, and Luo Si. 2019. Struct-
bert: Incorporating language structures into pre-
training for deep language understanding. arXiv
preprint arXiv:1908.04577.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao,
Yudong Li, Yechen Xu, Kai Sun, Dian Yu, Cong
Yu, Yin Tian, Qianqian Dong, Weitang Liu, Bo Shi,
Yiming Cui, Junyi Li, Jun Zeng, Rongzhao Wang,
Weijian Xie, Yanting Li, Yina Patterson, Zuoyu Tian,
Yiwen Zhang, He Zhou, Shaoweihua Liu, Zhe Zhao,
Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang
Yang, Kyle Richardson, and Zhenzhong Lan. 2020.
CLUE: A Chinese language understanding evalua-
tion benchmark. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 4762–4772, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
XLNet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural Infor-
mation Processing Systems, volume 32, pages 5753–
5763. Curran Associates, Inc.

A Hyperparameters of Fine-tuning

B Full Results on NER

C Full Results on Grammar Checking
Tasks

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://www.aclweb.org/anthology/P18-2124
https://www.aclweb.org/anthology/P18-2124
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2020.coling-main.419
https://doi.org/10.18653/v1/2020.coling-main.419
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf


Task Dataset MaxLen Batch Epoch InitLR Train # Dev # Test #

MRC CMRC 2018 512 64 2 3e-5 10K 3.2K 4.9K
DRCD 512 64 2 3e-5 27K 3.5K 3.5K

TC

XNLI 128 64 2 3e-5 392K 2.5K 5K
LCQMC 128 64 3 2e-5 240K 8.8K 12.5K
BQ Corpus 128 64 3 3e-5 100K 10K 10K
ChnSentiCorp 256 64 3 2e-5 9.6K 1.2K 1.2K
TNEWS 128 64 3 2e-5 53.3K 10K 10K
OCNLI 128 64 3 2e-5 56K 3K 3K

NER MSRA-NER 256 64 5 3e-5 45K - 3.4K
People’s Daily 256 64 5 3e-5 51K 4.6K -

Table 11: Hyper-parameter settings and data statistics for Chinese tasks.

Dataset MaxLen Batch Epoch InitLR Train # Dev #

SQuAD 1.1 512 64 2 3e-5 87.6K 10.6K
SQuAD 2.0 512 64 2 3e-5 130.3K 11.9K

MNLI 256 64 3 3e-5 392.7K 9.8K
SST-2 128 64 3 3e-5 67.3K 0.9K
CoLA 128 64 10 2e-5 8.6K 1.0K
MRPC 512 64 5 3e-5 3.7K 0.4K

Table 12: Data statistics and hyper-parameter settings for English tasks.

System MSRA-NER (Test) People’s Daily (Dev)
P R F P R F

BERTbase 95.2 (94.8) 95.4 (95.1) 95.3 (94.9) 95.3 (95.1) 95.3 (95.1) 95.3 (95.1)
RoBERTabase 95.3 (94.9) 95.6 (95.4) 95.5 (95.1) 94.9 (94.8) 95.3 (95.1) 95.1 (94.9)
ELECTRAbase 95.0 (94.5) 95.9 (95.4) 95.4 (95.0) 94.8 (94.7) 95.3 (95.2) 95.1 (94.9)
MacBERTbase 95.2 (94.9) 95.4 (95.4) 95.3 (95.1) 94.9 (94.6) 95.6 (95.1) 95.2 (94.9)
PERTbase 95.4 (95.2) 95.5 (95.5) 95.6 (95.3) 95.4 (95.1) 95.2 (95.0) 95.3 (95.1)

RoBERTalarge 95.4 (95.3) 95.7 (95.7) 95.5 (95.5) 95.7 (95.4) 95.7 (95.4) 95.7 (95.4)
ELECTRAlarge 94.9 (94.8) 95.5 (95.0) 95.0 (94.8) 94.8 (94.6) 95.3 (95.3) 94.9 (94.8)
MacBERTlarge 96.3 (95.8) 96.3 (95.9) 96.2 (95.9) 95.8 (95.6) 95.8 (95.7) 95.8 (95.7)
PERTlarge 96.4 (95.9) 96.4 (96.1) 96.2 (96.0) 96.3 (96.0) 96.0 (95.7) 96.1 (95.8)

Table 13: Results on Chinese named entity recognition (NER) tasks.

System Wikipedia Formal Doc. Customs Legal
P R F P R F P R F P R F

BERTGoogle
base 83.6 76.3 79.8 92.1 87.1 89.6 85.7 85.1 85.4 94.3 89.8 92.0

RoBERTabase 84.2 76.9 80.4 92.6 87.7 90.1 86.8 85.9 86.3 94.6 90.0 92.2
ELECTRAbase 69.9 57.8 63.6 88.1 81.6 84.7 69.6 71.0 70.3 91.7 85.4 88.4
MacBERTbase 84.3 77.1 80.5 92.7 87.8 90.2 86.4 86.5 86.4 94.6 90.1 92.3
PERTbase 86.5 79.5 82.9 93.6 89.0 91.2 88.3 88.0 88.2 95.2 90.7 92.9

Table 14: Results on in-house grammar checking tasks.


