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Abstract

In natural language processing, pre-trained lan-
guage models have become essential infras-
tructures. However, these models often suf-
fer from issues such as large size, long infer-
ence time, and challenging deployment. More-
over, most mainstream pre-trained models fo-
cus on English, and there are insufficient stud-
ies on small Chinese pre-trained models. In
this paper, we introduce MiniRBT, a small Chi-
nese pre-trained model that aims to advance re-
search in Chinese natural language processing.
MiniRBT employs a narrow and deep student
model and incorporates whole word masking
and two-stage distillation during pre-training
to make it well-suited for most downstream
tasks. Our experiments on machine reading
comprehension and text classification tasks re-
veal that MiniRBT achieves 94% performance
relative to RoBERTa, while providing a 6.8x
speedup, demonstrating its effectiveness and
efficiency.

1 Introduction

In recent years, the pre-trained language model
based on Transformers (Vaswani et al., 2017) has
become a paradigm of natural language process-
ing, and their performance has been increasing
with the growth in model size. These models
have dominated the lists of primary Al models
for natural language processing and computer vi-
sion, including BERT (Devlin et al., 2019), XL-
Net (Yang et al., 2019), RoBERTa (Liu et al., 2019),
SpanBERT (Joshi et al., 2020), ELECTRA (Clark
et al., 2020). Despite their significant progress, pre-
trained models still face considerable challenges in
practical applications, such as high training costs
and high latencies. Furthermore, while research on
pre-trained models has mainly focused on the En-
glish language, there is a lack of smaller pre-trained
models for Chinese.

Therefore, to further advance the development of
Chinese natural language processing, we propose a

small Chinese pre-trained model with strong prac-
ticability. Our approach involves utilizing dynamic
whole word masking techniques (Cui et al., 2021)
to generate training samples that facilitate compre-
hensive modeling of coarse-grained semantics. We
apply a narrow and deep model structure for the
student model. During the pre-training, we employ
a two-stage distillation method that incorporates a
teacher assistant model. We first distill from the
teacher to the teacher assistant, and then from the
teacher assistant to the student. This results in a
lighter and faster model that can be fine-tuned for
multiple downstream tasks, demonstrating excel-
lent performance.

Our research focuses primarily on developing
small Chinese pre-trained models that can be ap-
plied to practical tasks. The main contributions of
this paper can be summarized as follows:

1. We conduct experiments that conclude that a
narrower and deeper network structure is more
effective than a wide and shallow structure of
similar size.

2. Based on the above finding, we propose
MiniRBT!, a small pre-trained model for Chi-
nese which is only 10% the size of Chinese
RoBERTa, while maintaining an average per-
formance of 94% compared to RoBERTa.
Moreover, it offers a 6x-7x speedup.

2 Background
2.1 Chinese RoOBERTa-wwm

Since the emergence of BERT, pre-trained lan-
guage models have advanced significantly and
rapidly. However, conventional Chinese pre-
trained models, such as the original Chinese BERT,
typically employ a segmentation method that di-
vides Chinese sequences at the granularity of indi-
vidual characters, which means that Chinese words
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Table 1: Examples of different masking strategies.
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Figure 1: Comparison of one-stage distillation (left) and two-stage distillation (right) processes.

are segmented into characters using a WordPiece-
based word segmentation approach. These charac-
ters are randomly masked individually during train-
ing sample generation without considering Chi-
nese word segmentation. To address this issue,
Chinese RoBERTa-wwm (Cui et al., 2021) uses
a whole word masking (WWM) method specifi-
cally designed for Chinese. When part of a whole
Chinese word is masked, other parts of the same
word are also masked. It should be noted that the
WWM method only affects the selection of mask-
ing tokens during the pre-training stage. Chinese
RoBERTa-wwm is trained on Chinese Wikipedia
(both Simplified and Traditional). In our work,
we utilize Chinese ROBERTa-wwm as our teacher
model.

2.2 Knowledge Distillation

In recent years, a growing number of works on
model compression have been proposed to reduce
the number of model parameters and improve
the speed of model inference, such as quantiza-
tion (Shen et al., 2020; Fan et al., 2020), prun-
ing (Xia et al., 2022; Lagunas et al., 2021), knowl-
edge distillation (Jiao et al., 2020; Sun et al., 2020;
Sanh et al., 2019; Hou et al., 2020). Knowledge dis-
tillation (KD) transfers the knowledge embedded in
a large teacher model to a small student model by
training the student to mimic the behaviors of the
teacher. For instance, TinyBERT (Jiao et al., 2020)
first obtains a general distilled small model by per-

forming general distillation on the large-scale cor-
pus from a general domain, and then performs task-
specific distillation with downstream data during
the fine-tuning stage. DynaBERT (Hou et al., 2020)
trains a width-adaptive and depth-adaptive BERT
by distilling knowledge from full-sized models to
small sub-networks. KD is also applied to pruning
to enhance performance, such as block pruning (La-
gunas et al., 2021) and CoFi (Xia et al., 2022).

3 Method

In this section, we introduce the relevant method-
ologies employed by MiniRBT.

3.1 Whole Word Masking

The original WordPiece-based word segmentation
method separates Chinese input sequences into in-
dependent characters and randomly masks the char-
acters. This method simplifies prediction since
the model can only remember particular charac-
ter orders in words to predict masked characters
without considering the semantic contextual rela-
tionships. To enhance the model’s performance,
we adopted the dynamic Whole Word Masking
(WWM) approach as a training sample generation
strategy during the pre-training. We begin with uti-
lizing the conventional Chinese word segmentation
(CWS) method to segment the input into Chinese
words, and are subsequently masked using WWM,
as presented in Table 1. We employed LTP (Che
et al., 2010) as our preferred tool to extract word



segmentation information.

3.2 Two-stage Distillation

The traditional knowledge distillation method trans-
fers knowledge directly from the teacher to the
student. However, when there is a significant dif-
ference in the structures of the teacher and student
models, this approach may result in a performance
gap. To address this issue, we proposed using a two-
stage distillation approach during the pre-training
stage, which builds on the concept of Teacher Assis-
tant Knowledge Distillation (Mirzadeh et al., 2020).
As depicted in Figure 1, this method involves dis-
tilling knowledge from the teacher (RoOBERTa) to
the teacher assistant (RBT6), and then from the
teacher assistant to the student (MiniRBT). The
intermediate step of the teacher assistant helps to
reduce the size gap between the teacher and the
student model, subsequently improving the student
models’ performance in downstream tasks.

To apply knowledge distillation (KD) with hid-
den layer distillation and prediction layer distilla-
tion, we employed TextBrewer (Yang et al., 2020),
a PyTorch-based model distillation toolkit designed
for natural language processing. We distill the
knowledge from the output of the hidden layer.
The objective is

Liayer = Y _ MSE(H! W), Hy) (1)

where the matrices HY € R>*? and H} ¢ R*¢
represent the hidden representation of the ¢’-th stu-
dent’s hidden layer and the i-th teacher’s hidden
layer respectively. The W}, € R%*d is a linear
transformation that matches the hidden state of the
student network and the hidden state of the teacher
network. Apart from mimicking the hidden layer
behavior of the teacher, we also trained the student
model by employing the cross-entropy loss with
the teacher’s soft target probability

‘Cpred = _p(ZT) ’ logp(zs) (2)

where z° and 27 are the logits vectors predicted
by the student and teacher respectively, and p =
softmax(z/t) is the scaled probability with tem-
perature ¢ and logits z.

Finally, we combine the hidden layer distillation
with the prediction layer distillation:

Ldistill = ['laycr + Lprcd 3)

3.3 Narrower and Deeper Students

Through preliminary experiments, we find that a
narrow and deep model structure outperforms a
wide and shallow one, when they have the same
number of parameters. Hence, we employed a nar-
row and deep design for MiniRBT. We present the
details of the model structure in Table 2. MiniRBT
consists of two branches of models, MiniRBT-
H256 and MiniRBT-H288. These models have
hidden layer dimensions of 256 and 288, respec-
tively, and contain 6 transformer layers, pre-trained
via the two-stage distillation approach.

4 Experiments

4.1 Downstream Tasks

Machine Reading Comprehension Machine
reading comprehension (MRC) is a document-level
modeling task that requires models to answer ques-
tions based on given passages. We evaluated
our models on two Chinese reading comprehen-
sion datasets: CMRC 2018 (Cui et al., 2019) and
DRCD (Shao et al., 2018). They are similar in
the form of SQuAD (Rajpurkar et al., 2018). The
evaluation metrics are F1 and EM.

Text Classification For single sentence classifi-
cation, we use TNEWS and ChnSentiCorp (Tan
and Zhang, 2008). The ChnSentiCorp dataset in-
volves sentiment classification wherein texts need
to be classified as either positive or negative, while
TNEWS dataset involves the classification of short
texts into various news categories. For sentence
pair classification, we select three datasets: OCNLI,
LCQMC (Liu et al., 2018), and BQ corpus (Chen
et al., 2018). Both OCNLI and TNEWS are in-
cluded as subtasks in the Chinese Language Un-
derstanding Evaluation (CLUE) Benchmark (Xu
et al., 2020). The evaluation metric for these tasks
is accuracy.

4.2 Training Setup

During the pre-training phase, a training batch size
of 4096 and a peak learning rate of 4e-4 are em-
ployed, while the temperature is set to 8 and the
number of training steps is 100K.

We fine-tune the model on downstream tasks for
2, 3,5, and 10 epochs, respectively, with a learning
rate chosen from {5e — 5, 1e — 4}. To decrease the
impact of randomness on the experimental results,
we run each task at least three times with different
random seeds and report the average performance



Model Layers Hidden Size FFN Size Heads Model Size Model Size (w/o embeddings) Speedup
RoBERTa-wwm 12 768 3072 12 102.3M (100%) 85.7M (100%) 1x
RBT6 (KD) 6 768 3072 12 59.8M (58.4%) 43.1M (50.3%) 1.7x
RBT3 3 768 3072 12 38.5M (37.6%) 21.9M (25.6%) 2.8x
RBT4-H312 4 312 1200 12 11.4M (11.1%) 4.TM (5.5%) 6.8x
MiniRBT-H256 6 256 1024 8 10.4M (10.2%) 4.8M (5.6%) 6.8x
MiniRBT-H288 6 288 1152 8 12.3M (12.0%) 6.1M (7.1%) 5.7x

Table 2: Comparison of model structures. RBT stands for ROBERTa, and RBT3 is initialized by RoBERTa’s first
three layers and pre-trained for 1M steps. The number of layers does not include the embedding and prediction

layers.
Task CMRC 2018 DRCD OCNLI LCQMC BQ Corpus TNEWS ChnSentiCorp
(F1/EM) (F1/EM) (Acc) (Ace) (Ace) (Ace) (Ace)
RoBERTa 87.30/68.00  94.40/89.40  76.58 89.07 85.76 57.66 94.89
RBT6 (KD) 84.40/64.30 91.27/8493  72.83 88.52 84.54 55.52 93.42
RBT3 80.30/57.73  85.87/77.63  69.80 87.30 84.47 55.39 93.86
RBT4-H312 77.90/54.93  84.13/75.07  68.50 85.49 83.42 54.15 93.31
MiniRBT-H256 78.47/56.27 86.83/78.57  68.73 86.81 83.68 54.45 92.97
MiniRBT-H288 80.53/58.83  87.10/78.73  68.32 86.38 83.77 54.62 92.83

Table 3: Comparison of MiniRBT with baseline models on reading comprehension task and text classification task.

Model CMRC 2018 LCQMC
two-stage  77.97/54.60 86.58
one-stage  77.57/54.27 86.39

Table 4: Comparing the results of two-stage distilla-
tion and one-stage distillation. The model is MiniRBT-
H256 pre-trained with 30K steps, which is different
from the published 100K step pre-trained model.

score on the development set. It is worth noting
that, for smaller models, increasing the number of
iterations and the learning rate tends to improve the
performance on downstream tasks.

Model speedups are evaluated relative to Chi-
nese RoBERTa on a single NVIDIA M40 GPU.
The input length for all tasks was set to 512, with a
batch size of 128.

4.3 Results

Table 3 presents the results of MiniRBT’s perfor-
mance on reading comprehension and text classi-
fication tasks. With only 10% of the parameters
used by Chinese RoBERTa, MiniRBT achieves
over 92% of its performance, a substantial im-
provement over RBT3 which has 3-4 times more
parameters in reading comprehension tasks. In
text classification tasks, MiniRBT achieves 98%
of RoOBERTa’s performance, with an average rela-
tive performance of 95.3% compared to Chinese
RoBERTa. Table 3 further indicates that, with the

same number of parameters (excluding the embed-
ding layer), MiniRBT outperforms RBT4-H312,
demonstrating that a narrow and deep model struc-
ture yields superior performance when compared
to a wide and shallow model structure.

Table 4 reveals that two-stage pre-training distil-
lation outperforms one-stage pre-training distilla-
tion in both reading comprehension and text classi-
fication tasks. These results suggest that the two-
stage distillation approach effectively reduces the
gap in size between teacher and student models,
thus allowing students to maintain excellent perfor-
mance even with small sizes.

5 Conclusion

In this study, we introduce MiniRBT, a small Chi-
nese pre-trained model pre-trained with dynamic
WWM, two-stage distillation, and a narrow and
deep model structure. With only 10% of the param-
eters of ROBERTa, MiniRBT achieves an average
relative performance of 94% and a speedup of 6.8x.
Our findings demonstrate that MiniRBT has no-
table performance advantages over other models
with the same number of parameters and can even
surpass larger models with 3-4 times more parame-
ters. In the future, we expect to combine pruning
and quantization to propose more lightweight mod-
els.
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