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Abstract

Despite the success of existing works on single-turn conversation generation, taking the coher-
ence in consideration, human conversing is actually a context-sensitive process. Inspired by
the existing studies, this paper proposed the static and dynamic attention based approaches for
context-sensitive generation of open-domain conversational responses. Experimental results on
two public datasets show that the proposed static attention based approach outperforms all the
baselines on automatic and human evaluation.

1 Introduction

Until recently, training open-domain conversational systems that can imitate the way of human convers-
ing is still not a well-solved problem and non-trivial task. Previous efforts focus on generating open-
domain conversational responses as an unsupervised clustering process (Ritter et al., 2010), a phrase-
based statistical machine translation task (Ritter et al., 2011) and a search problem based on the vector
space model (Banchs and Li, 2012), etc. With the booming of deep learning, particularly the neural net-
work based sequence-to-sequence models, generating open-domain conversational responses gradually
turns into an end-to-end encoding and decoding process (Sutskever et al., 2014; Vinyals and Le, 2015;
Shang et al., 2015; Serban et al., 2016b; Li et al., 2016a; Li et al., 2016b; Shao et al., 2017; Yao et
al., 2017). Despite the success of the above research on single-turn conversational response generation,
human conversations are usually coherent (Li et al., 2016c) and context-sensitive (Tian et al., 2017; X-
ing et al., 2017). Table 1 illustrates how contextual information in conversations impact on the response
generation. For instance, given a message1 “How should I tell my mom?”, as input, to a single-turn

Conversation 1 Conversation 2
A: I got a high score on my exam. A: I failed to pass the exam.
B: Oh! Great! B: That’s too bad.
A: How should I tell my mom? A: How should I tell my mom?
B: Go and give her a big surprise! B: Just tell her the truth and do well next time.

Table 1: An example of the impact of contextual information on human conversations. “A” and “B”
denote two speakers in the conversations.

conversational response generation model, it should output a fixed response regardless of the content in
previous utterances. However, as shown in Table 1, in the conversations2, the responses to be generated
(the last utterance in Table 1) should not only dependent on the last one message (“How should I tell my
mom?”), but also need to consider the longer historical utterances in the conversations.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/

1Here, a “message” indicates an input of a response in single-turn conversational response generation.
2In this paper, a “conversation” equals to an “open-domain conversation”and a “conversational response” or “response”

equals to an “open-domain conversational response”.
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Recent studies on generating open-domain conversational responses begin to explore the context in-
formation to generate more informative and coherent responses. Serban et al. (2016a) presented a hi-
erarchical recurrent encoder-decoder (HRED) to recurrently model the dialogue context. Serban et al.
(2017b) further introduced a stochastic latent variable at each dialogue turn to improve the diversity of
the HRED model. Zhao et al. (2017) proposed a conditional variational autoencoder based approach to
learning contextual diversity for neural response generation. Xing et al. (2017) proposed a hierarchical
recurrent attention network (HRAN) to jointly model the importance of tokens and utterances. Tian et
al. (2017) treated the hierarchical modeling of contextual information as a recurrent process in encoding.
We could make two conclusions from these works.

• First, existing studies of utterance modeling mainly focus on representing utterances by using bidi-
rectional GRU (Xing et al., 2017) or unidirectional GRU (Tian et al., 2017).

• Second, there are two types of approaches on context (inter-utterance) modeling. One is the
attention-based approach (Xing et al., 2017), the other is the sequential integration approach (Tian
et al., 2017).

Drawing the advantages of the existing approaches, in this paper, we proposed a novel context-
sensitive generation approach, which obtains the context representation of a conversation by weighing
the importance of each utterance using two attention mechanisms, namely dynamic and static attention,
to generate open-domain conversational responses.

2 The Proposed Context-Sensitive Generation Approach

2.1 Preliminary
A typical neural network based sequence-to-sequence model for generating open-domain conversational
responses usually includes an encoder and a decoder. The encoder expresses an input message as a dense
vector which represents the semantics of the input message. The decoder then generates a conversational
response according to the semantic representation of the input message. In context-sensitive generation
of open-domain conversational responses, the input message to the encoder usually includes several
historical utterances in a conversation. Therefore, one of the key problems in context-sensitive generation
is how to encode historical utterances in a conversation. Figure 1 presents two state-of-the-art approaches
to encoding contextual information for context-sensitive response generation. Here, ui, ui+1 and uj
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Figure 1: The encoders of two state-of-the-art approaches of open-domain conversational response gen-
eration using contextual information.

denote the i-th, i+1-th and j-th utterance, respectively, in a conversation. As the inputs of the two
models, they are then represented to utterance-level vectors as shown in the second layer of the two
models in Figure 1. The context vectors of the two models are obtained by hierarchically representing
the utterances to a dense vector c for decoding. It is easy to recognize that the frameworks used to
illustrate the encoders of two existing context-sensitive generation models look similar to each other.
There are two different parts between the two frameworks:
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• Utterance Representations: Bidirectional GRU vs. Unidirectional GRU
Xing et al. (2017) utilized a bidirectional GRU and a word-level attention mechanism to transfer word
representations to utterance representations. Tian et al. (2017) represented the utterance in a simpler way,
which is a unidirectional GRU.

• Inter-utterance Representations: Attention vs. Sequential Integration
Xing et al. (2017) proposed a hierarchical attention mechanism to feed the utterance representations to
a backward RNN to obtain contextual representation. Tian et al. (2017) proposed a weighted sequential
integration (WSI) approach to use an RNN model and a heuristic weighting mechanism to obtain inter-
utterance representation.

2.2 The Proposed Model
The proposed context-sensitive generation model is under the framework of encoder-decoder. To obtain
the contextual representations, the proposed model consists of a hierarchical representation mechanis-
m for encoding. For utterance representation, we consider the advantages of the two state-of-the-art
approaches to encoding contextual information for context-sensitive response generation (Xing et al.,
2017; Tian et al., 2017). We utilize a GRU model to obtain utterance representation. For inter-utterance
representation, inspired by the above approaches of modeling inter-utterance representations, we pro-
posed two attention mechanisms, namely dynamic and static attention, to weigh the importance of each
utterance in a conversation and obtain the contextual representation. Figure 2 shows the framework of
the proposed context-sensitive generation model. Drawing the advantages of attention mechanism on
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Figure 2: The proposed context-sensitive generation model for open-domain conversational response.
Here, u⇤ denotes the ⇤-th utterance in a conversation.

weighing the importance of utterances for generating open-domain conversational responses (Xing et al.,
2017), we thus model the inter-utterance representation to obtain the context vector in two measures,
namely static and dynamic attention, as shown in Figure 2. We then formally describe the static and
dynamic attention for decoding process.

• Static Attention based Decoding
As shown in Figure 2, the static attention mechanism calculates the importance of each utterance as ei

or ↵i (i 2 {1, ..., s}).
ei = V T tanh(Whi + Uhs) (1)

↵i =
exp(ei)P
i exp(ei)

(2)
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c =
X

i

↵ihi (3)

Here, hi and hs denote the representations of hidden state of the i-th and the last utterance in a conver-
sation, respectively. V , W and U are parameters. We can see that once the weights of each utterance
↵i (i 2 {1, ..., s}) are produced, they will be unchanged in the decoding process. In decoding, the t-th
hidden state st can be calculated as follows:

st = f(yt�1, st�1, c) (4)

Here, yt�1 is the t�1-th output of the decoder and st�1 is the hidden state of t-1-th time step in decoding.
Notice that y0 is set to be a special character and s0 is initialized by hs. The generated response is thus
represented as a sequence of y1, y2, ..., yT , where T denotes the last time step.

• Dynamic Attention based Decoding
Rather than the static attention mechanism fixes the weights of each utterance before decoding process,
the dynamic attention mechanism maintains a weighting matrix and updates the weights of each utter-
ance during decoding process as shown in Figure 2. The formal illustration of the dynamic attention
mechanism for decoding is as follows:

ei,t = V T tanh(Whi + Ust�1) (5)

↵i,t =
exp(ei,t)P

i exp(ei)
(6)

ct =
X

i

↵i,thi (7)

Here, V , W and U are also parameters that are independent to those in the static attention. T denotes the
transposition operation of V . The ei,t and ↵i,t are calculated in each time step t of decoding. The t-th
hidden state st in dynamic attention-based decoder can be calculated as follows:

st = f(yt�1, st�1, ct) (8)

The main difference between our proposed conversational response generation model and the above
two state-of-the-art models is the two attention mechanisms for obtaining the contextual representation
of a conversation. Rather than use a hierarchical attention neural network (Xing et al., 2017) to obtain
the contextual representation of a conversation, we propose two utterance-level attentions for weighting
the importance of each utterance in the context, which is more simple in structure and has less number
of parameters than the hierarchical attention approach. Meanwhile, rather than use a heuristic approach
to weigh the importance of each utterance in the context (Tian et al., 2017), in our proposed approach,
the weights of utterance in the context are learned by two attention mechanisms from the data, which is
more reasonable and flexible than the heuristic based approach.

3 Experimental Results

3.1 Experiment Settings
Dataset: Two datasets are selected for the experiment of generation of open-domain conversational re-
sponses. First is the Ubuntu dataset which is developed by Lowe et al. (2015). The dataset is extracted
from the Ubuntu Internet Relayed Chat (IRC) channel and recently used for the generation of conver-
sational responses in (Serban et al., 2016a; Serban et al., 2017b; Serban et al., 2017a). We follow the
train-test split proposed by Serban et al. (2017a). It is worthy to note that there is no development set
in Serban et al. (2017a). In this paper, we randomly select the same number of sessions to that in the test
set from the training set. Second is the OpenSubtitles dataset which is proposed by Tiedemann (2009)
and also used by Li et al. (2016a; Li et al. (2016c). The detailed statistics of the two datasets are shown in
Table 2. It is worthy to note that the original released data of OpenSubtitles consists of about 40,000,000
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utterances without partitions of conversational session, which is called “session” for short in the follow-
ing of this paper. Therefore, we split each of 10 continuous utterances as a session. We then randomly
sample 800,000 sessions for training (including 8,000 sessions for developing) and remove them from
the complete dataset. In the rest of the complete dataset, we again randomly sample 8,000 sessions for
testset. The vocabulary size equals to the number of unique tokens in both two datasets, respectively.

Ubuntu OpenSubtitles
Train size 429,915 792,000
Dev size 18,920 8,000
Test size 18,920 8,000
Vocabulary size 155,490 91,405
Avg # of u per session 7.5 10
Avg # of w per u 12.3 7.5

Table 2: The statistics of two experimental datasets. Avg is short for average. # represents number. u
and w denote utterance and word respectively. The unit of training and test is a conversational session.

Hyper-Parameters: For the static attention model, the dimension of hidden layer in encoder and decoder
is 512. The padding length is set to 15. The dimension of word embedding equals to 200. The word
embedding is pre-trained using the skip-gram model in word2vec (Mikolov et al., 2013) and fine-tuned
during the learning process. For the dynamic attention model, the dimension of hidden layer in encoder
and decoder is 1024. The padding length and dimension of word embedding are same to the static atten-
tion model. Adam is used for optimization. The initial learning rate is 0.001 and the weight decay is set
to 10�5. The dropout parameter equals to 0.5. Mini-batch is used and the batch size equals to 80. The
number of iterations in training is 10.
Baselines: For the experimental comparisons, six baselines are chosen. Four out of them are state-of-
the-art approaches. They are VHRED, CVAE, WSI, and HRAN.

• LSTM: Under the sequence-to-sequence framework for generation of conversational responses, the
most simple but natural idea is to directly use the LSTM to encode all the utterances in a session
word by word and then decode to generate a response.

• HRED: The first hierarchical recurrent encoder-decoder model, which is proposed by Serban et al.
(2016a), for conversational response generation.

• VHRED: The augmented HRED model, which incorporates a stochastic latent variable at utterance
level for encoding and decoding, is proposed by Serban et al. (2017b).

• CVAE: The conditional variational autoencoder based approach, which is proposed by Zhao et al.
(2017), to learn context diversity for conversational responses generation.

• WSI and HRAN are proposed by Tian et al. (2017) and Xing et al. (2017) respectively. We detailed
describe and compare the two models in Section 2.1 and 2.2 and their frameworks are shown in
Figure 1.

3.2 Evaluation and Results
3.2.1 Automatic Evaluation
Until now, automatically evaluating the quality of open-domain conversational response is still an open
problem. The BLEU score (Papineni et al., 2002), which is a widely used evaluation metric for ma-
chine translation, is not a suitable metric for conversation generation, as the appropriate responses to the
same message may share less common words. Moreover, it is also impossible to construct a reference
set, which includes all appropriate responses, of each message. The perplexity that is used to evaluate
language model, is also not suitable to evaluate the relevance between messages and responses (Shang
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Models Ubuntu OpenSubtitles
Average Greedy Extrema Average Greedy Extrema

LSTM 0.2300 0.1689 0.1574 0.5549 0.5029 0.3897
HRED 0.5770 0.4169 0.3914 0.5571 0.5033 0.3932

VHRED 0.5419 0.3839 0.3627 0.5248 0.4821 0.3556
CVAE 0.5672 0.3982 0.3689 0.4708 0.3390 0.3173
WSI 0.5775 0.4196 0.3893 0.5598 0.4964 0.3903

HRAN 0.5964 0.4139 0.3898 0.5617 0.5195 0.3898
Dynamic� 0.5750 0.4043 0.3802 0.5487 0.5054 0.3812
Dynamic! 0.5968 0.4132 0.3877 0.5629 0.5193 0.3905

Static� 0.5998 0.4124 0.3886 0.5475 0.5147 0.3862
Static! 0.6121† 0.4293† 0.3975† 0.5656† 0.5232† 0.3937†

Table 3: The results of automatic evaluation on Ubuntu and OpenSubtitles datasets. Dynamic and Static
are our proposed approaches whose framework is shown in Figure 2. The other models are baselines. !
and � denote the use of unidirectional and bidirectional GRU in the proposed model to obtain utterance
representations, respectively. † denotes the results pass the statistical significance test with p < 0.05.

et al., 2015; Li et al., 2016c). In this paper, we employ an evaluation metric that is proposed by Ser-
ban et al. (2016a) and also used in (Serban et al., 2017b). Rather than calculating the token-level or
n-gram similarity as the perplexity and BLEU (Papineni et al., 2002), the metric measure the semantic
similarity between a generated responses r̂ and the ground-truth responses r by matching their semantic
representations. The metric also has three aspects, namely Average, Greedy and Extrema. For the
Average, it first calculates the element-wise arithmetic average of embeddings of all words in r̂a and
ra, respectively and produces two response representations vr̂a and vra . The value of Average is then
equals to the cosine similarity of vr̂a and vra . For the Greedy, every word in r̂ will find a most similar
word in r by calculating the cosine similarity of their word embeddings. After that, the element-wise
arithmetic average of embeddings of all words in r̂a and the corresponding words in r are calculated
and two response representations vr̂g and vrg are produced. The value of Greedy is then equals to
the cosine similarity of vr̂g and vrg . For the Extrema, two embedding matrices mr̂ and mr can be
obtained by arranging the embeddings of all words in r̂a and ra, respectively. The i-th column of mr̂ is
the embedding of the i-th word in r̂ as well as that in mr. Getting the maximum value of each row in mr̂

and mr, respectively, we then obtain two response representations vr̂e and vre . The value of Extrema
is then equals to the cosine similarity of vr̂e and vre .

Table 3 shows the experimental results on two datasets.
We can see that our proposed context-sensitive generation model with static attention outperforms all

the baselines in the two datasets. It verifies the effectiveness of the proposed utterance-level attention
mechanism on modeling context representations for generating conversational responses. To compare
the dynamic and static attentions, we find that for the generation of conversational response, dynamical-
ly estimate the importance of each utterance in context performs worse than the static attention approach.
The reason may be that the context vector in dynamic attention model is changed in every time step of
decoding. The change of context vector may lead to decoding incoherent responses. Meanwhile, the uni-
directional GRU based models outperform the bidirectional GRU based models. It doesn’t illustrate the
unidirectional GRU is better than the bidirectional GRU in utterance representation. It only indicates that
in the current experimental settings, the unidirectional GRU based model outperforms the bidirectional
one.

3.2.2 Human Evaluation
For human evaluation, we proposed 2 metrics, namely Coherence and Naturalness. As the exam-
ple shown in Table 1, in context-sensitive generation of conversational responses, a generated response
should not only dependent on the last one message but also need to consider the longer context in the
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Models Ubuntu OpenSubtitles
Coherence Naturalness Diversity Coherence Naturalness Diversity

LSTM 0.930 0.477 0.069 0.963 0.443 0.099
HRED 0.967 0.490 0.141 0.963 0.443 0.098

VHRED 1.010 0.507 0.140 0.986 0.473 0.093
CVAE 0.987 0.513 0.140 1.000 0.477 0.114
WSI 1.010 0.507 0.141 1.013 0.490 0.110

HRAN 1.027 0.510 0.147 1.033 0.477 0.109
Dynamic 0.987 0.507 0.158 1.013 0.477 0.109

Static 1.070 0.513 0.150 1.027 0.497 0.110

Table 4: The results of human evaluation on Ubuntu and OpenSubtitles datasets.

conversation. Coherence is thus used to evaluate the semantic consistency between a generated response
and its context. The Coherence score is in the range of 0 to 2, where 0, 1, 2 denote incoherent, neutral
and coherent, respectively. In some cases, a coherent response may not be a natural one. Given an ex-
ample message, “Can you tell me the way to the nearest bazaar?”, the response “Yes, I can tell you the
way to the nearest bazaar.” is definitely a coherent but not a natural response. A more extreme example
of a message-response pair is “I don’t know what you are talking about!” and “I don’t know what you
are talking about!”. Therefore, besides the Coherence, we proposed another metric, Naturalness, to e-
valuate the quality of generated responses. For human evaluation, given a context and a conversational
response generated by a model, Naturalness denotes whether the response can be an alternative to a
human response. The Naturalness value equals to 1 or 0, which represents the generated response can be
an alternative to a human response or not, respectively. Besides the Coherence and Naturalness, we also
want to compare the Diversity of the responses generated by all baselines and our proposed approach.
Here, diversity score of a generated response equals to the number of distinct tokens in the response
divided by the total number of distinct tokens in its context (including the number of distinct tokens in
the response). The final Diversity score is the average diversity of all the generated responses in test set.

In the human evaluation, for each model, we randomly sample 500 test results from Ubuntu and
OpenSubtitles datasets, respectively. Each of the three annotators, who are undergraduate students and
not involved in other parts of the experiment, is asked to provide the evaluation scores for all the 8,000
test results. The final score of each model equals to the average score of the three annotators. Table 4
shows the human evaluation results on the two datasets. Generally speaking, we can see that the proposed
static attention-based model outperforms the baselines in Coherence and Naturalness on Ubuntu dataset
and obtains comparable performance with the HRAN model in Coherence on OpenSubtitles dataset. For
the Diversity, we can see that the proposed dynamic attention-based model is better at generating diverse
responses than other models on Ubuntu dataset. We also notice that the CVAE model obtains the best
diversity performance on OpenSubtitles dataset and the best Naturalness performance on Ubuntu dataset.

3.2.3 Analysis of Context Length
To verify the impact of context length on the performance of the proposed model for the generation of
conversational responses, we use different length of context to re-train the proposed models, which are
called context varied models, on two datasets. Here, context length indicates the number of historical
utterances that are used for encoding in a context. Figure 3 shows that the performance of the proposed
static and dynamic attention models are varying with the change of context length. The values denote the
difference between the results of Static! and Dynamic! in Table 3 and the results of the context varied
models. It also verifies that the generation of conversational responses is a context-sensitive process,
which relates to the numbers of utterance in context for encoding. Table 5 shows the conversational
responses, which are sampled from the test result generated by the proposed static attention model. We
can see that the attention values predicted by the static attention model can appropriately reveal the
importance of the utterance in a context for generating conversational responses.
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Figure 3: The impact of different number of utterances, used for encoding, in a context (context length)
on the performance of the proposed static and dynamic attention based models on two experimental
datasets. The range of context length is from 2 to 9.

Sample 1 ↵

Context
Bonhoeffer, what drives do you want to mount? 0.4872
What? 0.1535
I have an ext3 usb drive. 0.3593

Response I have a usb drive, I want to use it for testing.

Sample 2 ↵

Context
Are you using a 32bit version of firefox? why? 0.2284
Need to use webex, doesn’t support 64bit java. 0.4660
Using 64bit firefox. 0.3056

Response I have a 64-bit machine, and I want to use 64 bit.

Table 5: Samples of the generated responses from the Ubuntu test result. ↵ indicates the attention value
of each utterance in context calculated by the proposed static attention mechanism.

4 Related Work

Ritter et al. (2010) proposed an unsupervised approach to model dialogue response by clustering the raw
utterances. They then presented an end-to-end dialogue response generator by using a phrase-based sta-
tistical machine translation model (Ritter et al., 2011). Banchs and Li (2012) introduced a search-based
system, named IRIS, to generate dialogues using vector space model and then released the experimen-
tal corpus for research and development (Banchs, 2012). Recently, benefit from the advantages of the
sequence-to-sequence learning framework with neural networks, Sutskever et al. (2014) and Shang et
al. (2015) had drawn inspiration from the neural machine translation (Bahdanau et al., 2014) and pro-
posed an RNN encoder-decoder based approach to generate dialogue by considering the last one sentence
and a larger range of context respectively. Serban et al. (2016b) proposed a parallel stochastic genera-
tion framework which first generates a coarse sequence and then generates an utterance conditioned on
the coarse sequence. Shao et al. (2017) introduced the “glimpse-model” which adds self-attention to
the decoder to maintain coherence for generating long, informative, coherent and diverse responses in
single turn setting. Yao et al. (2017) first predicted cue words using point-wise mutual information (P-
MI) for short text conversation generation and then added them into the encoder-decoder framework.
To consider the context information for improving the diversity of generated conversations, Serban et
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al. (2016a) presented a hierarchical recurrent encoder-decoder (HRED) approach to encode each utter-
ance and recurrently model the dialogue context to generate context-dependent responses. Serban et al.
(2017b) further introduced a stochastic latent variable at each dialogue turn to improve the ambiguity
and uncertainty of the HRED model for dialogue generation. Xing et al. (2017) proposed a hierarchical
recurrent attention network (HRAN) to jointly model the importance of tokens in utterances and the ut-
terances in context for context-aware response generation. Tian et al. (2017) presented a context-aware
hierarchical model to generate conversations by jointly modeling the utterance and inter-utterance infor-
mation for encoding process. As the advantages of generative adversarial net (GAN) and variational
autoencoder (VAE), Yu et al. (2017) proposed a sequence generative adversarial net model to assess a
partially generated sequence with policy gradient and obtain the intermediate rewards by using Monte
Carlo search. Zhao et al. (2017) modified the VAE model by conditioning the response into the VAE
model in training step to optimize the similarity of prior network and recognition network for dialogue
generation. Similarly, Shen et al. (2017) presented a conditional variational framework to generate spe-
cific responses based on the dialog context. Due to the recent advantages of reinforcement learning
on modeling human-computer interactions, such as the AlphaGo (Silver et al., 2016), researchers begin
to focus on modeling the success of a conversation by not only considering the quality of single turn
response generation, but also considering long-term goal of the conversation. To address the problems
of generating generic and repetitive response of the RNN encoder-decoder framework, Li et al. (2016c)
proposed a deep reinforcement learning approach to either generate meaningful and diverse response or
increase the length of the generated dialogues. Dhingra et al. (2017) presented an end-to-end dialogue
system for information accquisition, which is called KB-InfoBot from knowledge base (KB) by using
reinforcement learning. Asghar et al. (2017) proposed an active learning approach to learn user explicit
feedback online and combine the offline supervised learning for response generation of conversational
agents.

5 Conclusion and Future Work

This paper proposed a novel context-sensitive generation approach for open-domain conversational re-
sponses. The proposed model gained from the proposed static and dynamic attention for context or
inter-utterance representation. Experimental results show that the proposed model generally outperform-
s all the baselines in automatic and human evaluations. It is also verified the impact of context length
on the performance of the proposed generation models for conversational responses. In future work, the
way to uniformly integrate the static and dynamic attention for decoding will be explored.
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