
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, NOVEMBER 2021 1

Pre-Training with Whole Word Masking for
Chinese BERT

Yiming Cui†‡, Wanxiang Che†, Ting Liu†, Bing Qin†, Ziqing Yang‡§
†Research Center for Social Computing and Information Retrieval, Harbin Institute of Technology, Harbin, China

‡State Key Laboratory of Cognitive Intelligence, iFLYTEK Research, Beijing, China
§iFLYTEK AI Research (Hebei), Langfang, China

†{ymcui,car,tliu,qinb}@ir.hit.edu.cn, ‡§{ymcui,zqyang5}@iflytek.com

Abstract—Bidirectional Encoder Representations from Trans-
formers (BERT) has shown marvelous improvements across
various NLP tasks, and its consecutive variants have been
proposed to further improve the performance of the pre-trained
language models. In this paper, we aim to first introduce the
whole word masking (wwm) strategy for Chinese BERT, along
with a series of Chinese pre-trained language models. Then
we also propose a simple but effective model called MacBERT,
which improves upon RoBERTa in several ways. Especially, we
propose a new masking strategy called MLM as correction (Mac).
To demonstrate the effectiveness of these models, we create a
series of Chinese pre-trained language models as our baselines,
including BERT, RoBERTa, ELECTRA, RBT, etc. We carried
out extensive experiments on ten Chinese NLP tasks to evaluate
the created Chinese pre-trained language models as well as the
proposed MacBERT. Experimental results show that MacBERT
could achieve state-of-the-art performances on many NLP tasks,
and we also ablate details with several findings that may help
future research. We open-source our pre-trained language models
for further facilitating our research community.1

Index Terms—pre-trained language model, representation
learning, natural language processing

I. INTRODUCTION

BERT [1] has become enormously popular and has proven
to be effective in recent natural language processing

studies, which utilizes large-scale unlabeled training data and
generates enriched contextual representations. As we traverse
several popular machine reading comprehension benchmarks,
such as SQuAD [2], CoQA [3], QuAC [4], NaturalQuestions
[5], RACE [6], we can see that most of the top-performing
models are based on BERT and its variants [7], [8], [9],
demonstrating that the pre-trained language models have
become new fundamental components in natural language
processing field.

Starting from BERT, the community members have made
great and rapid progress on optimizing the pre-trained lan-
guage models, such as ERNIE [10], XLNet [11], RoBERTa
[12], SpanBERT [13], ALBERT [14], ELECTRA [15], etc.
However, training Transformer-based [16] pre-trained lan-
guage models are not as easy as we used to train word
embeddings or other traditional neural networks for learning
representations. Typically, training a powerful BERT-large
model with a 24-layer Transformer and 330 million param-
eters, to convergence needs high-memory computing devices,

1Resources are available: https://github.com/ymcui/Chinese-BERT-wwm

such as TPU or TPU Pod, which are very expensive. On the
other hand, though various pre-trained language models have
been released, most of them are based on English, and there are
few efforts on building powerful pre-trained language models
in other languages.

To minimize the repetitive work and build baselines for
future studies, in this paper, we aim to build Chinese pre-
trained language model series and release them to the public
for facilitating the research community, as Chinese and English
are among the most spoken languages in the world. We
revisit the existing popular pre-trained language models and
adjust them to the Chinese language to see whether these
models could generalize and perform well in a language other
than English. Besides, we also propose a new pre-trained
language model called MacBERT, which replaces the original
MLM task into MLM as correction (Mac) task. MacBERT
mainly aims to mitigate the discrepancy of the pre-training
and fine-tuning stage in original BERT. Extensive experiments
are conducted on ten popular Chinese NLP datasets, ranging
from sentence-level to document-level tasks, such as machine
reading comprehension, text classification, etc. The results
show that the proposed MacBERT could give significant
gains in most of the tasks against other pre-trained language
models, and detailed ablations are given to better examine the
composition of the improvements. The contributions of this
paper are listed as follows.

• To further accelerate future research on Chinese NLP, we
create and release the Chinese pre-trained language model
series to our community. Extensive empirical studies are
carried out to revisit the performance of these pre-trained
language models on various tasks with careful analyses.

• We propose a new pre-trained language model called
MacBERT that mitigates the gap between the pre-training
and fine-tuning stage by masking the word with its
similar word, which has proven to be effective on various
downstream tasks.

• We also create a series of small models, called RBT,
to demonstrate how small models perform compared to
regular pre-trained language models, which could help
utilize them in real-life applications.

II. RELATED WORK

In this section, we revisit the techniques of the representative
pre-trained language models in the recent natural language

https://github.com/ymcui/Chinese-BERT-wwm


IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, NOVEMBER 2021 2

processing field. The overall comparisons of these models,
as well as the proposed MacBERT, are depicted in Table
I. We elaborate on their key components in the following
subsections.

A. BERT

BERT (Bidirectional Encoder Representations from Trans-
formers) [1] has demonstrated its effectiveness in a wide range
of natural language processing tasks. BERT is designed to pre-
train deep bidirectional representations by jointly conditioning
on both left and right context in all Transformer layers.
Primarily, BERT consists of two pre-training tasks: Masked
Language Model (MLM) and Next Sentence Prediction (NSP).

• MLM: Randomly masks some of the tokens from the
input, and the objective is to predict the original word
based only on its context.

• NSP: To predict whether sentence B is the next sentence
of sentence A.

Later, they further propose a technique called whole word
masking (wwm) for optimizing the original masking in the
MLM task. In this setting, instead of randomly selecting
WordPiece [17] tokens to mask, we always mask all of
the tokens corresponding to a whole word at once. This
explicitly forces the model to recover the whole word in the
MLM pre-training task instead of just recovering WordPiece
tokens [18], which is much more challenging. As the whole
word masking only affects the masking strategy of the pre-
training process, it would not bring additional burdens on
downstream tasks. Moreover, as training pre-trained language
models are computationally expensive, they also release all
the pre-trained models as well as the source codes, which
significantly stimulates the community to have great interests
in the research of pre-trained language models.

B. ERNIE

ERNIE (Enhanced Representation through kNowledge IntE-
gration) [10] is designed to optimize the masking process of
BERT, which includes entity-level masking and phrase-level
masking. Different from selecting random words in the input,
entity-level masking masks the named entities, which are often
formed by several words. Phrase-level masking is to mask
consecutive words, which is similar to the N-gram masking
strategy [1], [13], [19].2.

C. XLNet

[11] argues that the existing pre-trained language models
that are based on auto-encoding, such as BERT, which suf-
fer from the discrepancy of the pre-training and fine-tuning
stage because the masking token [MASK] never appears in
the fine-tuning stage. To alleviate this problem, XLNet is
proposed, which is based on Transformer-XL [7]. XLNet
mainly modifies in two ways. The first is to maximize the
expected likelihood over all permutations of the factorization

2Though N-gram masking was not included in [1], according to their model
name in SQuAD leaderboard, we often admit their credit towards this method.

order of the input, where they call the Permutation Language
Model. To achieve this goal, they propose a novel two-stream
self-attention mechanism. Another one is to change the auto-
encoding language model into an auto-regressive one, which
is similar to the traditional statistical language models.

D. RoBERTa

RoBERTa (Robustly Optimized BERT Pretraining Ap-
proach) [12] aims to adopt original BERT architecture but
make much more precise modifications to fully release the
power of BERT, which is underestimated in [1]. They carry
out careful comparisons of various components in BERT,
including the masking strategies, input format, training steps,
etc. After thorough evaluations, they come up with several
useful conclusions to make BERT more powerful, mainly
including 1) training longer with bigger batches and longer
sequences over more data; 2) removing the next sentence
prediction task and using dynamic masking in MLM task.

E. ALBERT

ALBERT (A Lite BERT) [14] primarily tackles the prob-
lems of higher memory consumption and slow training speed
of BERT. ALBERT introduces two techniques for param-
eter reduction. The first one is the factorized embedding
parameterization, which decomposes the embedding matrix
into two small matrices. The second one is the cross-layer
parameter sharing that the Transformer weights are shared
across each layer of ALBERT, which significantly reduces the
overall parameters. Besides, they also propose the sentence-
order prediction (SOP) task to replace the traditional NSP pre-
training task and yield better performances.

F. ELECTRA

ELECTRA (Efficiently Learning an Encoder that Classi-
fiers Token Replacements Accurately) [15] employs a new
generator-discriminator framework that is similar to generative
adversarial net (GAN) [20]. The generator is typically a small
MLM that learns to predict the original words of the masked
tokens. The discriminator is trained to discriminate whether
the input token is replaced by the generator, which they
call Replaced Token Detection (RTD). Note that, to achieve
efficient training, the discriminator is only required to predict
a binary label to indicate “replacement”, unlike the way of
MLM that should predict the exact masked word. After the
pre-training stage, we discard the generator and only use the
discriminator for fine-tuning downstream tasks.

III. CHINESE PRE-TRAINED LANGUAGE MODELS

While BERT and its variants have achieved significant
improvements in various English tasks, we wonder if these
models and techniques could generalize well in other lan-
guages. In this section, we illustrate how the existing pre-
trained language models are adapted for the Chinese language.
We adopt BERT, RoBERTa, and ELECTRA as well as their
variants to create Chinese pre-trained model series, and their
effectiveness is shown in Section VI. Note that, as these
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TABLE I
COMPARISONS OF THE PRE-TRAINED LANGUAGE MODELS. (AE: AUTO-ENCODING, AR: AUTO-REGRESSIVE, T: TOKEN, S: SEGMENT, P: POSITION, E:

ENTITY, PH: PHRASE, WWM: WHOLE WORD MASKING, NM: N-GRAM MASKING, NSP: NEXT SENTENCE PREDICTION, SOP: SENTENCE ORDER
PREDICTION, MLM: MASKED LM, PLM: PERMUTATION LM, GEN-DIS: GENERATOR-DISCRIMINATOR, MAC: MLM AS CORRECTION)

BERT ERNIE XLNet RoBERTa ALBERT ELECTRA MacBERT

Type AE AE AR AE AE AE AE
Embeddings T/S/P T/S/P T/S/P T/S/P T/S/P T/S/P T/S/P
Masking T T/E/Ph - T T T WWM/NM
LM Task MLM MLM PLM MLM MLM Gen-Dis Mac
Paired Task NSP NSP - - SOP - SOP

TABLE II
EXAMPLES OF DIF FERENT MASKING STRATEGIES. WE ALSO INCLUDE AN ENGLISH EXAMPLE FOR CLARITY. MASKED TOKENS ARE IN BOLDFACE.

Chinese English

Original Sentence 使用语言模型来预测下一个词的概率。 we use a language model to predict the probability of the next word.
+ CWS 语言 模模模型型型 来 预预预测测测 下 一个 词 的 概概概率率率 。 -
+ BERT Tokenizer 语 言 模模模 型型型 来 预预预 测测测 下 一 个 词 的 概概概 率率率 。 we use a language model to pre ##di ##ct the pro ##ba ##bility of the next word .

Original Masking 语 言 [M] 型型型 来 [M] 测测测 下 一 个 词 的 概概概 率率率 。 we use a language [M] to [M] ##di ##ct the pro [M] ##bility of the next word .
+ WWM 语 言 [M] [M] 来 [M] [M] 下 一 个 词 的 概概概 率率率 。 we use a language [M] to [M] [M] [M] the [M] [M] [M] of the next word .
++ N-gram Masking [M] [M] [M] [M] 来 [M] [M] 下 一 个 词 的 概概概 率率率 。 we use a [M] [M] to [M] [M] [M] the [M] [M] [M] [M] [M] next word .
+++ Mac Masking 语语语 法法法 建建建 模模模 来 预预预 见见见 下 一 个 词 的 几几几 率率率 。 we use a text system to ca ##lc ##ulate the po ##si ##bility of the next word .

models are all originated from BERT or ELECTRA without
changing the nature of the input, no modification should be
made to adapt to these models in the fine-tuning stage, which
is very flexible for replacing one another.

A. BERT-wwm & RoBERTa-wwm
In the original BERT, a WordPiece tokenizer [17] is used

to split the text into WordPiece tokens, where some words are
split into several small fragments. The whole word masking
(wwm) mitigates the drawback of masking only a part of
the whole word, which is easier for the model to predict.
In Chinese condition, WordPiece tokenizer no longer splits
the word into small fragments, as Chinese characters are
not formed by alphabet-like symbols. We use the traditional
Chinese Word Segmentation (CWS) tool to split the text into
several words. In this way, we could adopt the whole word
masking in Chinese to mask the word instead of individual
Chinese characters. For implementation, we strictly follow the
original whole word masking codes and do not change other
components, such as the percentage of word masking, etc.
We use LTP [21] for Chinese word segmentation to identify
the word boundaries. Note that the whole word masking only
affects the selection of the masking tokens in the pre-training
stage. We still uses WordPiece tokenizer to split the text, which
is identical to the original BERT.

Similarly, whole word masking can also be applied on
RoBERTa, where the NSP task is not adopted. However,
we still use a paired input for pre-training, which could
be beneficial to the sentence pair classification and reading
comprehension tasks. An example of the whole word masking
is depicted in Table II.

B. ELECTRA
Besides BERT and RoBERTa series, we also explore the

ELECTRA model, which adopts a new pre-training framework

that consists of a generator and discriminator. We strictly
follow the original implementation as in [15].

C. RBT Series

Though the aforementioned pre-trained language models
are powerful, they are computationally ineffective and hard
to adopt in real-life applications. To make pre-trained models
more accessible by community researchers, besides the regular
pre-trained language models, we also pre-train several small
models, where we call RBT. Specifically, we use exactly
the same training strategy as in training RoBERTa, but we
use fewer Transformer layers. We train 3-layer, 4-layer, 6-
layer RoBERTa-base, denoted as RBT3, RBT4, and RBT6,
respectively. We also train a 3-layer RoBERTa-large, denoted
as RBTL3, which has a similar parameter size as RBT6. This
is designed to compare a wider and shorter model (RBTL3)
with a thinner and taller model (RBT6) under a comparable
parameter size, which could be useful in the design of future
pre-trained language models.

IV. MACBERT

In the previous section, we propose a series of Chinese pre-
trained language models. In this section, we make the best
use of them and propose a novel model called MacBERT
(MLM as correction BERT). MacBERT shares the similar
types of pre-training tasks as BERT with several modifications.
MacBERT consists of two pre-training tasks: MLM as correc-
tion, and sentence order prediction. The overall architecture of
MacBERT is depicted in Figure 1.

A. MLM as correction

Masked Language Model (MLM) is the most important
pre-training task in BERT and its variants, which models
bidirectional contextual inference ability. However, as shown
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Input Sequence

MacBERT

[CLS] A1 An [SEP] B1 Bm [SEP]

A B

MLM as correction (Mac)Sentence Order
Prediction (SOP)

Fig. 1. Neural architecture of MacBERT.

in the previous section, the MLM suffers from the ‘pre-training
and fine-tuning’ discrepancy, where the artificial tokens in the
pre-training stage, such as [MASK], never appear in the real
downstream fine-tuning tasks.

To address this issue, we propose a novel pre-training
task called MLM as correction (Mac). In this pre-training
task, we do not adopt any pre-defined tokens for masking
purposes. Instead, we transform the original MLM as a text
correction task, where the model should correct the wrong
word into the correct one, which is much more natural than
MLM. Specifically, in the Mac task, we perform the following
modifications on the original MLM.

• We use the whole word masking as well as N-gram
masking strategies to select candidate tokens for masking,
with a percentage of 40%, 30%, 20%, 10% for word-
level unigram to 4-gram. We also notice that a recent
work PMI-masking [22] is proposed, which optimizes the
masking strategy. In this paper, we resort to vanilla N-
gram masking and will try PMI-masking in the future.

• Instead of masking with [MASK] token, which never
appears in the fine-tuning stage, we propose to use
similar words for the masking purpose. A similar word is
obtained by using Synonyms toolkit [23], which is based
on word2vec [24] similarity calculations. If an N-gram
is selected to mask, we find similar words individually.
In rare cases, when there is no similar word, we degrade
to use random word replacement. Such replacements are
restricted to no more than 10% of all tokens to be masked.

• Following previous works, we use a percentage of 15%
input words for masking, where 80% tokens are replaced
with similar words, 10% tokens are replaced with random
words, and keep with original words for the rest of 10%.

B. Sentence Order Prediction

The original next sentence prediction (NSP) task in BERT
is considered to be too easy for the model and proved to be not
that effective [12], [14]. In this paper, we adopt the sentence
order prediction (SOP) task as introduced by ALBERT [14],
which is shown to be much more effective than NSP. The
positive samples are created by using two consecutive texts,
while the negative ones are created by switching the original

order of them. We ablate these modifications in Section VII-A
to better demonstrate the contributions of each component.

C. Neural Architecture

Formally, given a pair of sequences A = {A1, . . . , An} and
B = {B1, . . . , Bm}, we first construct the input sequence X
by concatenating two sequences. Then, MacBERT converts X
into a contextualized representation H(L) ∈ RN×d through
an embedding layer (which consists of word embedding,
positional embedding, and token type embedding), and a
consecutive L-layer transformer, where N is the maximum
sequence length, and d is the dimension of hidden layers.

X = [CLS] A1 . . . An [SEP] B1 . . . Bm [SEP] (1)

H(0) = Embedding(X) (2)

H(i) = Transformer(H(i−1)), i ∈ {1, . . . , L} (3)

As we only need to predict the positions that are replaced
by the Mac task, after getting the contextual representation
HL, we collect a subset with respect to the replaced positions,
forming the replaced representation Hm ∈ Rk×d, where k is
the number of the replaced tokens. According to the definition
of Mac task, k = ⌊N × 15%⌋.

Then we project Hm into the vocabulary space to predict
the probability distributions p over the whole vocabulary V.
Following original BERT implementation, we also use word
embedding matrix W e ∈ R|V|×d to perform the projection, as
the embedding and hidden size are identical.

pi = Hm
i W

e⊤ + b (4)

Then we use the standard cross-entropy loss to optimize the
pre-training task.

L = − 1

M

M!

i=1

yi log pi (5)

For the SOP task, we directly use the contextual represen-
tation of the [CLS] token, which is the first component of
H , and project it into the label prediction layer.

p = softmax(h0W
s + bs) (6)

where the W s ∈ Rd×2 and bs ∈ R2 are the weight matrix and
bias. Then we also use the cross-entropy loss to optimize the
pre-training task (similar to Equation 5). Finally, the overall
training loss is the combination of the Mac and SOP task.

L = Lmac + Lsop (7)

V. EXPERIMENTAL SETUPS

A. Data Processing

We use Wikipedia dump3 (as of March 25, 2019), and
pre-process with WikiExtractor.py as suggested by [1],
resulting in 1,307 extracted files. We use both Simplified and
Traditional Chinese in this dump and do not convert the Tra-
ditional Chinese portion into Simplified one. We demonstrate

3https://dumps.wikimedia.org/zhwiki/latest/
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TABLE III
TRAINING DETAILS OF CHINESE PRE-TRAINED LANGUAGE MODELS.

BERT BERT-wwm RoBERTa-wwm RBT ELECTRA MacBERT

Word # 0.4B 5.4B 5.4B 5.4B 5.4B 5.4B
Vocab # 21,128 21,128 21,128 21,128 21,128 21,128
Hidden Activation GeLU GeLU GeLU GeLU GeLU GeLU
Optimizer AdamW LAMB AdamW AdamW AdamW LAMB
Training Steps (base/large) ? 2M 1M / 2M 1M 1M / 2M 1M / 2M
Initial Checkpoint (base) random BERT BERT RoBERTa random BERT

the effectiveness in the Traditional Chinese task in Section
VI-A. After cleaning the raw text, such as removing html
tags and separating the document, we obtain about 0.4B
words. As Chinese Wikipedia data is relatively small, besides
Chinese Wikipedia, we also use extended training data for
training these pre-trained language models (mark with ext
in the model name). The in-house collected extended data
contains encyclopedia, news, and question answering web,
which has 5.4B words and is over ten times bigger than the
Chinese Wikipedia. Note that we always use extended data
for MacBERT and omit the ext mark. In order to identify
the boundary of Chinese words for whole word masking,
we use LTP [21] for Chinese word segmentation. We use
official create_pretraining_data.py provided by [1]
to convert the raw input text to the pre-training examples.

B. Setups for Pre-Trained Language Models

To better acquire the knowledge from the existing pre-
trained language model, we did NOT train our base-level
model from scratch but the official Chinese BERT-base, inher-
iting its vocabulary and weight. However, for the large-level
model, we have to train from scratch but still using the same
vocabulary provided by the base-level model. The base-level
model is a 12-layer transformer with a hidden dimension of
768, while the large-level model is a 24-layer transformer with
a hidden dimension of 1024.

For training BERT series, we adopt the scheme of training
on a maximum sequence length of 128 tokens then on 512,
suggested by [1]. However, we empirically found that this
results in insufficient adaptation for the long-sequence tasks,
such as reading comprehension. In this context, for models
other than BERT, we directly use a maximum length of 512
throughout the pre-training process, which is adopted in [12].
For smaller batch sizes, we adopt the original ADAM [25]
with weight decay optimizer in BERT for optimization, and
use LAMB optimizer [26] for better scalability in larger batch
size. The pre-training was either done on a single Google
Cloud TPU4 v3-8 (equals to a single TPU) or TPU Pod v3-32
(equals to 4 TPUs), depending on the magnitude of the model.
Specifically, for MacBERT-large, we trained for 2M steps with
a batch size of 512 and an initial learning rate of 1e-4.

The training details are shown in Table III. For clarity, we
do not list ‘ext’ models, where the other parameters are the
same as the one that is not trained on extended data.

4https://cloud.google.com/tpu/

TABLE IV
DATA STATISTICS AND HYPER-PARAMETER SETTINGS FOR DIF FERENT

F INE-TUNING TASKS.

Dataset MaxLen Epoch LR Train Dev Test

CMRC 2018 512 2 3e-5 10K 3.2K 4.9K
DRCD 512 2 3e-5 27K 3.5K 3.5K
CJRC 512 2 4e-5 10K 3.2K 3.2K

ChnSentiCorp 256 3 2e-5 9.6K 1.2K 1.2K
THUCNews 512 3 2e-5 50K 5K 10K
TNEWS 128 3 2e-5 53.3K 10K 10K

XNLI 128 2 3e-5 392K 2.5K 5K
LCQMC 128 3 2e-5 240K 8.8K 12.5K
BQ Corpus 128 3 3e-5 100K 10K 10K
OCNLI 128 3 2e-5 56K 3K 3K

C. Setups for Fine-tuning Tasks

To thoroughly test these pre-trained language models, we
carry out extensive experiments on various natural language
processing tasks, covering a wide spectrum of text length, i.e.,
from sentence-level to document-level. Task details are shown
in Table IV. Specifically, we choose the following ten popular
Chinese datasets.
• Machine Reading Comprehension (MRC): CMRC 2018

[27], DRCD [28], CJRC [29].
• Single Sentence Classification (SSC): ChnSentiCorp [30],

THUCNews [31], TNEWS[32].
• Sentence Pair Classification (SPC): XNLI [33], LCQMC

[34], BQ Corpus [35], OCNLI[36].
In order to make a fair comparison, for each dataset, we

keep the same hyper-parameters (such as maximum length,
warm-up steps, etc.) and only tune the initial learning rate
from 1e-5 to 5e-5 for each task. Note that the initial learning
rates are tuned on the original Chinese BERT, and it would
be possible to achieve another gain by tuning the learning
rate individually. We run the same experiment ten times to
ensure the reliability of the results. The best initial learning
rate is determined by selecting the best average development
set performance. We report the maximum and average scores
to both evaluate the peak and average performance. Except
for TNEWS and OCNLI, where the test sets are not publicly
available, we report both development and test set results.

For all models except for ELECTRA, we use the same initial
learning rate setting for each task, as depicted in Table IV. For
ELECTRA models, we use a universal initial learning rate of
1e-4 for base-level models and 5e-5 for large-level models as
suggested in [15].
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TABLE V
RESULTS ON CMRC 2018 (SIMPLIF IED CHINESE) AND DRCD. THE AVERAGE SCORES OF 10 INDEPENDENT RUNS ARE DEPICTED IN BRACKETS.

OVERALL BEST PERFORMANCES ARE DEPICTED IN BOLDFACE (BASE-LEVEL AND LARGE-LEVEL ARE MARKED INDIVIDUALLY).

CMRC 2018 DRCD
Dev Test Challenge Dev Test

EM F1 EM F1 EM F1 EM F1 EM F1

BERT 65.5 (64.4) 84.5 (84.0) 70.0 (68.7) 87.0 (86.3) 18.6 (17.0) 43.3 (41.3) 83.1 (82.7) 89.9 (89.6) 82.2 (81.6) 89.2 (88.8)

BERT-wwm 66.3 (65.0) 85.6 (84.7) 70.5 (69.1) 87.4 (86.7) 21.0 (19.3) 47.0 (43.9) 84.3 (83.4) 90.5 (90.2) 82.8 (81.8) 89.7 (89.0)

BERT-wwm-ext 67.1 (65.6) 85.7 (85.0) 71.4 (70.0) 87.7 (87.0) 24.0 (20.0) 47.3 (44.6) 85.0 (84.5) 91.2 (90.9) 83.6 (83.0) 90.4 (89.9)

RoBERTa-wwm-ext 67.4 (66.5) 87.2 (86.5) 72.6 (71.4) 89.4 (88.8) 26.2 (24.6) 51.0 (49.1) 86.6 (85.9) 92.5 (92.2) 85.6 (85.2) 92.0 (91.7)

ELECTRA-base 68.4 (68.0) 84.8 (84.6) 73.1 (72.7) 87.1 (86.9) 22.6 (21.7) 45.0 (43.8) 87.5 (87.0) 92.5 (92.3) 86.9 (86.6) 91.8 (91.7)

MacBERT-base 68.5 (67.3) 87.9 (87.1) 73.2 (72.4) 89.5 (89.2) 30.2 (26.4) 54.0 (52.2) 89.4 (89.2) 94.3 (94.1) 89.5 (88.7) 93.8 (93.5)

ELECTRA-large 69.1 (68.2) 85.2 (84.5) 73.9 (72.8) 87.1 (86.6) 23.0 (21.6) 44.2 (43.2) 88.8 (88.7) 93.3 (93.2) 88.8 (88.2) 93.6 (93.2)

RoBERTa-wwm-ext-large 68.5 (67.6) 88.4 (87.9) 74.2 (72.4) 90.6 (90.0) 31.5 (30.1) 60.1 (57.5) 89.6 (89.1) 94.8 (94.4) 89.6 (88.9) 94.5 (94.1)

MacBERT-large 70.7 (68.6) 88.9 (88.2) 74.8 (73.2) 90.7 (90.1) 31.9 (29.6) 60.2 (57.6) 91.2 (90.8) 95.6 (95.3) 91.7 (90.9) 95.6 (95.3)

As the pre-training data are quite different among vari-
ous existing Chinese pre-trained language models, such as
ERNIE [10], ERNIE 2.0 [37], NEZHA [38], we only compare
BERT [1], BERT-wwm, BERT-wwm-ext, RoBERTa-wwm-
ext, RoBERTa-wwm-ext-large, ELECTRA, along with our
MacBERT to ensure relatively fair comparisons among differ-
ent models, where all models are trained by ourselves except
for the original Chinese BERT [1]. We carried out experiments
under TensorFlow framework [39] with slight modifications
to the fine-tuning scripts5 provided by [1] to better adapt to
Chinese tasks.

VI. RESULTS

A. Machine Reading Comprehension

Machine Reading Comprehension (MRC) is a representative
document-level modeling task that requires to answer the
questions based on the given passages. We mainly test these
models on three datasets: CMRC 2018, DRCD, and CJRC.

• CMRC 2018: A span-extraction machine reading com-
prehension dataset, which is similar to SQuAD [40] that
extract a passage span for the given question.

• DRCD: This is also a span-extraction MRC dataset but
in Traditional Chinese.

• CJRC: Similar to CoQA [3], which has yes/no questions,
no-answer questions, and span-extraction questions. The
data is collected from Chinese law judgment documents.
Note that we only use small-train-data.json for
training.

The results are depicted in Table V and VI. Using additional
pre-training data results in further improvement, as shown
in the comparison between BERT-wwm and BERT-wwm-ext.
This is why we use extended data for RoBERTa, ELECTRA,
and MacBERT. Moreover, the proposed MacBERT yields sig-
nificant improvements on all reading comprehension datasets.
It is worth mentioning that our MacBERT-large could achieve
a state-of-the-art F1 of 60% on the challenge set of CMRC
2018, which requires deeper text understanding.

Also, it should be noted that though DRCD is a traditional
Chinese dataset, training with additional large-scale simplified

5https://github.com/google-research/bert

TABLE VI
RESULTS ON CJRC.

CJRC Dev Test
EM F1 EM F1

BERT 54.6 (54.0) 75.4 (74.5) 55.1 (54.1) 75.2 (74.3)

BERT-wwm 54.7 (54.0) 75.2 (74.8) 55.1 (54.1) 75.4 (74.4)

BERT-wwm-ext 55.6 (54.8) 76.0 (75.3) 55.6 (54.9) 75.8 (75.0)

RoBERTa-wwm-ext 58.7 (57.6) 79.1 (78.3) 59.0 (57.8) 79.0 (78.0)

ELECTRA-base 59.0 (58.1) 79.4 (78.5) 59.3 (58.2) 79.4 (78.3)

MacBERT-base 60.4 (59.5) 80.3 (79.2) 60.3 (59.3) 79.8 (79.0)

ELECTRA-large 61.9 (60.8) 82.1 (81.2) 62.3 (61.2) 82.0 (80.7)

RoBERTa-wwm-ext-L 62.1 (61.1) 82.4 (81.6) 62.4 (61.4) 82.2 (81.0)

MacBERT-large 62.4 (61.3) 82.3 (81.4) 62.9 (61.6) 82.5 (81.1)

Chinese could also have a great positive effect. As simplified
and traditional Chinese share many identical characters, using
a powerful pre-trained language model with only a few tra-
ditional Chinese data could also bring improvements without
converting traditional Chinese characters into simplified ones.

Regarding CJRC, where the text is written in professional
ways regarding Chinese laws, BERT-wwm shows moderate
improvement over BERT but not that salient, indicating that
further domain adaptation is needed for the fine-tuning tasks
on non-general domains. However, increasing general pre-
training data results in improvement, suggesting that when
there is not enough domain data, we could also use large-scale
general data as a remedy.

B. Single Sentence Classification

For the single sentence classification tasks, we select
ChnSentiCorp, THUCNews, and TNEWS datasets. We use the
ChnSentiCorp for evaluating sentiment classification, where
the text should be classified into either a positive or negative
label. THUCNews is a dataset that contains news in different
genres, where the text is typically very long. In this paper,
we use a version that contains 50K news in 10 domains
(evenly distributed), including sports, finance, technology, etc.6

TNEWS is a short text classification task consisting of news
titles and keywords. TNEWS requires to classify into one of 15

6https://github.com/gaussic/text-classification-cnn-rnn
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TABLE VII
RESULTS ON SINGLE SENTENCE CLASSIF ICATION TASKS: CHNSENTICORP,
THUCNEWS AND TNEWS. ‘R’ STANDS FOR ROBERTA, ‘E’ STANDS FOR

ELECTRA, ‘M’ STANDS FOR ‘MACBERT’.

ChnSentiCorp THUCNews TNEWS
Dev Test Dev Test Dev

BERT 94.7 (94.3) 95.0 (94.7) 97.7 (97.4) 97.8 (97.6) 56.3 (56.1)

BERT-w 95.1 (94.5) 95.4 (95.0) 98.0 (97.6) 97.8 (97.6) 56.5 (56.3)

BERT-w-e 95.4 (94.6) 95.3 (94.8) 97.7 (97.5) 97.7 (97.5) 57.0 (56.6)

R-base 94.9 (94.6) 95.6 (94.9) 98.3 (97.9) 97.8 (97.5) 57.4 (56.9)

E-base 93.8 (93.0) 94.5 (93.5) 98.1 (97.9) 97.8 (97.5) 56.1 (55.7)

M-base 95.2 (94.8) 95.6 (94.9) 98.2 (98.0) 97.7 (97.5) 57.4 (57.1)

E-large 95.2 (94.6) 95.3 (94.8) 98.2 (97.8) 97.8 (97.6) 57.2 (56.9)

R-large 95.8 (94.9) 95.8 (94.9) 98.3 (97.7) 97.8 (97.6) 58.8 (58.4)

M-large 95.7 (95.0) 95.9 (95.1) 98.1 (97.8) 97.9 (97.7) 59.0 (58.8)

classes. The results show that MacBERT could give moderate
improvements over baselines in ChnSentiCorp and THUC-
News, as these datasets have already reached high accuracies.
In TNEWS, we can see that our MacBERT yields consistent
improvements across base-level and large-level PLMs.

C. Sentence Pair Classification

For sentence pair classification tasks, we use XNLI data
(Chinese portion), Large-scale Chinese Question Matching
Corpus (LCQMC), BQ Corpus, and OCNLI, which require
to input two sequences and predict their relations.

In XNLI and OCNLI, we can see that MacBERT yields rel-
atively consistent and significant improvements over baselines.
However, MacBERT only shows moderate improvements on
LCQMC and BQ Corpus, with a slight improvement on the
average score, but the peak performance is not as good as
RoBERTa-wwm-ext-large. We suspect that these tasks are
less sensitive to the subtle difference of the input than the
reading comprehension tasks. As sentence pair classification
only needs to generate a unified representation of the whole
input and thus results in a moderate improvement.

We also noticed that the improvements are bigger in MRC
tasks than classification tasks, while it might attribute to the
masking strategy. In MRC tasks, the models should identify
the exact answer span in the passage. In MacBERT, each word
of N-gram is either replaced by its synonym or a random word,
and thus each word can be easily identified, which forces the
model to learn the word boundaries.

Another observation is that MacBERT-base generally yields
larger improvements than MacBERT-large. This might be
caused by two reasons. Firstly, MacBERT-base is initialized
by BERT-base, which could benefit from the knowledge in
BERT-base and avoid the cold-starting issue. Secondly, the
results of large-level PLMs are generally higher than those
of base-level PLMs, and thus getting a higher score is much
difficult than base-level PLMs.

D. Results on Small Models

We also build a series of small models, namely RBT,
built on either RoBERTa-base or RoBERTa-large models. The
experimental results are shown in Table IX. Small models

perform worse than the general models (base-level, large-
level), because they use fewer parameters. As we can see that
the performance drops in classification tasks are smaller than
the reading comprehension tasks, indicating that it is possible
to sacrifice minor performance to obtain a faster and smaller
model, which could be beneficial for real-life applications.
Also, by comparing RBTL3 and RBT6, which have similar pa-
rameter sizes, we can see that RBT6 substantially outperforms
RBTL3, which indicates that a thin-and-tall model usually
outperforms a wide-and-short model. These observations could
be helpful in future model design for real-life applications.

VII. DISCUSSION

Based on the experimental results, we can see that these
pre-trained language models also yield significant improve-
ments over traditional BERT in Chinese tasks, indicating their
effectiveness and generalizability. While our models achieve
significant improvements on various Chinese tasks, we wonder
where the essential components of the improvements from.
To this end, we carry out detailed ablations on MacBERT to
demonstrate its effectiveness, and we also compare the claims
of the existing pre-trained language models in English to see
if their modification still holds true in another language.

A. Effectiveness of MacBERT

We carry out detailed ablations to examine the contributions
of each component in MacBERT. The results are shown in
Table X.

The overall average scores are obtained by averaging the
test scores of each task (EM and F1 metrics are averaged
before the overall averaging). From a general view, removing
any component in MacBERT results in a decline in the average
performance, suggesting that all modifications contribute to the
overall improvements. Specifically, the most effective modifi-
cations are the N-gram masking and similar word replacement,
which are the modifications on the masked language model
task. When we compare N-gram masking and similar word
replacement, we could see clear pros and cons, where N-
gram masking seems to be more effective in text classification
tasks, and the performance of reading comprehension tasks
seems to benefit more from the similar word replacement task.
Combining these two tasks could compensate for each other
and have a better performance on both genres.

The NSP task does not show as much importance as the
MLM task, demonstrating that it is much more important to
design a better MLM task to fully unleash the text modeling
power. Also, we compared the next sentence prediction [1]
and sentence order prediction [14] task to better judge which
one is much powerful. The results show that the sentence
order prediction task indeed shows better performance than
the original NSP, though it is not that salient. The SOP task
requires identifying the correct order of the two sentences
rather than using a random sentence, which is much easy for
the machine to identify. Removing the SOP task results in
noticeable declines in reading comprehension tasks compared
to the text classification tasks, which suggests that it is
necessary to design an NSP-like task to learn the relations
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TABLE VIII
RESULTS ON SENTENCE PAIR CLASSIF ICATION TASKS: XNLI, LCQMC, BQ CORPUS, AND OCNLI.

XNLI LCQMC BQ Corpus OCNLI
Dev Test Dev Test Dev Test Dev

BERT 77.8 (77.4) 77.8 (77.5) 89.4 (88.4) 86.9 (86.4) 86.0 (85.5) 84.8 (84.6) 74.6 (74.2)

BERT-wwm 79.0 (78.4) 78.2 (78.0) 89.4 (89.2) 87.0 (86.8) 86.1 (85.6) 85.2 (84.9) 74.6 (74.3)

BERT-wwm-ext 79.4 (78.6) 78.7 (78.3) 89.6 (89.2) 87.1 (86.6) 86.4 (85.5) 85.3 (84.8) 76.0 (75.3)

RoBERTa-wwm-ext 80.0 (79.2) 78.8 (78.3) 89.0 (88.7) 86.4 (86.1) 86.0 (85.4) 85.0 (84.6) 76.5 (76.0)

ELECTRA-base 77.9 (77.0) 78.4 (77.8) 90.2 (89.8) 87.6 (87.3) 84.8 (84.7) 84.5 (84.0) 76.1 (75.8)

MacBERT-base 80.3 (79.7) 79.3 (78.8) 89.5 (89.3) 87.0 (86.5) 86.0 (85.5) 85.2 (84.9) 77.0 (76.5)

ELECTRA-large 81.5 (80.8) 81.0 (80.9) 90.7 (90.4) 87.3 (87.2) 86.7 (86.2) 85.1 (84.8) 78.8 (78.4)

RoBERTa-wwm-ext-large 82.1 (81.3) 81.2 (80.6) 90.4 (90.0) 87.0 (86.8) 86.3 (85.7) 85.8 (84.9) 78.5 (78.2)

MacBERT-large 82.4 (81.8) 81.3 (80.6) 90.6 (90.3) 87.6 (87.1) 86.2 (85.7) 85.6 (85.0) 79.0 (78.7)

TABLE IX
RESULTS ON RBT SERIES, WHICH ARE BUILT ON ROBERTA-LARGE (ROBERTA-WWM-EXT-LARGE) AND ROBERTA-BASE (ROBERTA-WWM-EXT).

System Params CMRC 2018 DRCD CJRC CSC THUC XNLI LC BQ AVGEM F1 EM F1 EM F1 ACC ACC ACC ACC ACC

RoBERTa-large 324M 74.2 90.6 89.6 94.5 62.4 82.2 95.8 97.8 81.2 87.0 85.8 86.79
RoBERTa-base 102M 72.6 89.4 85.6 92.0 59.0 79.0 95.6 97.8 78.8 86.4 85.0 85.30
RBTL3 61M 63.3 83.4 77.2 85.6 64.6 74.9 94.2 97.8 74.0 85.1 83.6 82.40
RBT3 38M 62.2 81.8 75.0 83.9 63.5 73.7 92.8 97.5 72.3 85.1 83.3 81.38
RBT4 45M 65.0 83.9 78.7 86.7 65.5 75.3 93.8 97.7 74.2 85.7 83.7 82.83
RBT6 60M 68.3 84.4 83.9 90.2 69.1 78.8 95.3 97.8 76.2 86.6 84.2 84.68

TABLE X
ABLATIONS OF MACBERT-LARGE ON DIF FERENT F INE-TUNING TASKS.

System CMRC 2018 DRCD CJRC CSC THUC XNLI LC BQ AVGEM F1 EM F1 EM F1 ACC ACC ACC ACC ACC

MacBERT-large 74.8 90.7 91.7 95.6 62.9 82.5 95.9 97.9 81.3 87.6 85.6 87.18
SOP → NSP 74.5 90.6 91.5 95.5 62.4 82.3 96.0 97.8 81.2 87.4 85.2 87.00
w/o SOP 74.4 90.6 91.0 95.4 62.2 82.1 95.8 97.8 81.1 87.4 85.2 86.89

w/o Mac 74.2 90.1 91.2 95.4 62.2 82.3 95.7 97.8 81.2 87.4 85.3 86.88
w/o NM 74.0 89.8 90.9 95.1 62.1 82.0 95.9 97.9 81.3 87.5 85.6 86.89
RoBERTa-large 74.2 90.6 89.6 94.5 62.4 82.2 95.8 97.8 81.2 87.0 85.8 86.79

between two segments (for example, passage and question in
reading comprehension task).

B. Investigation on MLM Task
As illustrated in the previous section, the dominant pre-

training task is the masked language model and its variants.
The masked language model task relies on two sides: 1) the
selection of the tokens to be masked, and 2) the replacement
of the selected tokens. In the previous section, we have
demonstrated the effectiveness of the selection of the masking
tokens, such as the whole word masking or N-gram masking,
etc. Now we are going to investigate how the replacement of
the selected tokens affects the performance of the pre-trained
language models. In order to investigate this problem, we plot
the CMRC 2018 and DRCD performance at different pre-
training steps. Specifically, we follow the original masking
percentage 15% of the input sequence, in which 10% masked
tokens remain the same. In terms of the remaining 90%
masked tokens, we classify them into four categories.

• MacBERT: 80% tokens replaced into their similar words,
and 10% replaced into random words.

• Random Replace: 90% tokens replaced into random
words.

• Partial Mask: original BERT implementation, with 80%
tokens replaced into [MASK] tokens, and 10% replaced
into random words.

• All Mask: 90% tokens replaced with [MASK] tokens.
We only plot the steps from 1M to 2M to show stabler

results than the first 1M steps. The results are depicted in
Figure 2.

The pre-training models that rely on mostly using [MASK]
for masking purposes (i.e., partial mask and all mask) result in
worse performances, indicating that the discrepancy of the pre-
training and fine-tuning is an actual problem that affects the
overall performance. Among which, we also noticed that if we
do not leave 10% as original tokens (i.e., identity projection),
there is also a consistent decline, indicating that masking with
[MASK] token is less robust and vulnerable to the absence of
identity projection for negative sample training.

To our surprise, a quick fix, that is to abandon the [MASK]
token completely and replace all 90% masked tokens into
random words, yields consistent improvements over [MASK]-
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Fig. 2. Results of different MLM tasks on CMRC 2018 and DRCD.

dependent masking strategies. This also strengthens the claims
that the original masking method that relies on the [MASK]
token, which never appears in the fine-tuning task, resulting
in a discrepancy and worse performance. Also, using random
words rather than the artificial token [MASK] could improve
the de-noising ability of the pre-trained model, which might
also be a possible reason. To make this more delicate, in this
paper, we propose to use similar words for masking purposes,
instead of randomly pick a word from the vocabulary, as
random words are not fit in the context and may break the
naturalness of the language model learning, as traditional N-
gram language model is based on natural sentence rather than
a manipulated influent sentence. However, if we use similar
words for masking purposes, the fluency of the sentence
is much better than using random words, and the whole
task transforms into a grammar correction task, which is
much more natural and without the discrepancy of the pre-
training and fine-tuning stage. From the figure, we can see
that the MacBERT yields the best performance among the
four variants, which verifies our assumptions.

C. Analyses on Chinese Spell Check

MacBERT introduces ‘MLM as correction’ tasks, which
is similar to the actual grammar or spell error correction
tasks. We perform additional experiments on Chinese Spell
Check tasks. We use SIGHAN-15 [41] dataset to explore the
effect of different pre-trained language models when using
different percentages of training data. SIGHAN-15 consists
of a training set of 3.1K instances and a test set of 1.1K
instances. We compare BERT-wwm-ext, RoBERTa-wwm-ext,
ELECTRA-base, and MacBERT-base in this experiment, as

they share the same pre-training data. We fine-tune each model
five times and plot the figures with averaged F1 (sentence-
level). We use a universal learning rate of 5e-5 and train 5
epochs with a batch size of 64. The results are shown in Figure
3, including detection-level and correction-level scores.

(a) Detection-level

(b) Correction-level

Fig. 3. Results of using different percentage of SIGHAN-15 training data.

As we can see that our MacBERT yields consistent im-
provements over others when using different percentages of
the training data, indicating that our approach is effective
and scalable. We notice that ELECTRA does not perform
well on this task. Especially, the gap between ELECTRA and
others on the correction-level results are relatively larger than
that in the detection-level. ELECTRA uses replaced token
detection (RTD) task for training the discriminator (which
will be used for fine-tuning). However, the RTD task only
needs to identify whether the input tokens are altered without
predicting the original token, which we think is quite simple.
On the contrary, MLM and Mac objectives require identify-
and-correction at the same time. By comparing MLM and
Mac, our MacBERT alleviates the discrepancy of pre-training
and fine-tuning issues, which yields another significant gain.

We note that though the Mac task is similar to the spell
check task, we only use synonyms for replacement, which is
only a small proportion in real spell check tasks. This could
explain why our model does not yield larger improvement over
others when there is fewer training data available.
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VIII. CONCLUSION

In this paper, we revisit pre-trained language models in
Chinese to see if the techniques in these state-of-the-art models
generalize well in a different language other than English only.
We created Chinese pre-trained language model series and
proposed a new model called MacBERT, which modifies the
masked language model (MLM) task as a language correction
manner and mitigates the discrepancy of the pre-training and
fine-tuning stage. Extensive experiments are conducted on
various Chinese NLP datasets, and the results show that the
proposed MacBERT could give significant gains in most of
the tasks, and detailed ablations show that more focus should
be made on the MLM task rather than the NSP task and
its variants, as we found that NSP-like task does not show
a landslide advantage over one another. With the release of
the Chinese pre-trained language model series, we hope it
will further accelerate the natural language processing in our
research community.

In the future, we would like to investigate an effective
way to determine the masking ratios instead of heuristic
ones to further improve the performance of the pre-trained
language models. Also, we would like to design more effective
language modeling approaches to further exploit large-scale
unsupervised data.
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